Abstract:
The present invention relates to electronic components and in particular relates to ceramic-based electronic components wherein a portion of the component comprises a metal-infiltrated ceramic. In a preferred embodiment, the metal-infiltrated ceramic comprises copper metal.
Abstract:
A process for sealing a ceramic filter by infiltrating a metal into an end of the filter. The process includes the steps of contacting the end of a porous ceramic filter with a molten metal, whereby the metal enters into the ceramic matrix to substantially fill the void space. The ceramic filter is cooled to form a filter having a ceramic-metal composite portion. The present invention also provides a filter having an infiltrated metal seal. Methods for joining infiltrated ends are also provided.
Abstract:
A process for sealing a ceramic filter by infiltrating a metal into an end of the filter. The process includes the steps of contacting the end of a porous ceramic filter with a molten metal, whereby the metal enters into the ceramic matrix to substantially fill the void space. The ceramic filter is cooled to form a filter having a ceramic-metal composite portion. The present invention also provides a filter having an infiltrated metal seal. Methods for joining infiltrated ends are also provided.
Abstract:
An improved method for the fluorination of a diamond surfaces comprises condensing a layer of perfluorinated alkyl iodides consisting of C.sub.n F.sub.2n+1 I (where n is a positive integer from 1 to 13) on the diamond surface, producing perfluorinated alkyl free radicals by photodecomposing C--I bonds of said perfluorinated alkyl iodides on the diamond surface, reacting the diamond surface with photochemically produced perfluorinated alkyl radicals thereby anchoring photochemically induced photofragments of the perfluorinated alkyl iodides to the diamond surface forming a perfluorinated alkyl layer, and decomposing the perfluorinated alkyl layer on the diamond surface to cause the fluorination of the diamond surface by atomic F. The method achieves greater than one fluorine atom per surface carbon atom chemisorbed on the diamond using C.sub.4 F.sub.9 I. A fluorinated diamond made by the above method is also disclosed wherein a fluorinating perfluoroalkyl iodide, C.sub.n F.sub.2n+1 I, is selected from the group consisting of n=1 to 5. In one case, the fluorinating perfluoroalkyl iodide is C.sub.4 F.sub.9 I. In another case, it is CF.sub.3 I.
Abstract:
An improved method for the fluorination of a diamond surfaces comprises condensing a layer of perfluorinated alkyl iodides consisting of C.sub.n F.sub.2n+1 I (where n is a positive integer from 1 to 13) on the diamond surface, producing perfluorinated alkyl free radicals by photodecomposing C--I bonds of said perfluorinated alkyl iodides on the diamond surface, reacting the diamond surface with photochemically produced perfluorinated alkyl radicals thereby anchoring photochemically induced photofragments of the perfluorinated alkyl iodides to the diamond surface forming a perfluorinated alkyl layer, and decomposing the perfluorinated alkyl layer on the diamond surface to cause the fluorination of the diamond surface by atomic F. The method achieves greater than one fluorine atom per surface carbon atom chemisorbed on the diamond using C.sub.4 F.sub.9 I.
Abstract:
Provided is a boron nitride sintered body including boron nitride particles and pores, in which a compressive elastic modulus is 1 GPa or more. Provided is a method for manufacturing a boron nitride sintered body, the method including: a nitriding step of firing a boron carbide powder in a nitrogen atmosphere to obtain a fired product containing boron carbonitride; and a sintering step of molding and heating a blend containing the fired product and a sintering aid to obtain the boron nitride sintered body including boron nitride particles and pores, in which the sintering aid contains a boron compound and a calcium compound, and the blend contains 1 to 20 parts by mass of the boron compound and the calcium compound in total with respect to 100 parts by mass of the fired product.
Abstract:
A process for sealing a ceramic filter by infiltrating a metal into an end of the filter is disclosed. The process includes the steps of contacting the end of a porous ceramic filter with a molten metal, whereby the metal enters into the ceramic matrix to substantially fill the void space. The ceramic filter is cooled to form a filter having a ceramic-metal composite portion. The present invention also provides a filter having an infiltrated metal seal. Methods for joining infiltrated ends are also provided.
Abstract:
An improved method for the lubrication of diamond-like carbon surfaces comprises condensing a layer of perflourinated alkyl halides of the formula C.sub.n F.sub.2n+1 X, wherein n is a positive integer from 1 to 13 and X is selected from I, Br and Cl, on the diamond-like carbon surface. Perflourinated alkyl free radicals are then produced by photodecomposing C--X bonds of said perflourinated alkyl halides on the surface. The diamond-like carbon surface is reacted with photochemically produced perflourinated alkyl radicals thereby anchoring photochemically induced photofragments of the perflourinated alkyl halides to the surface forming a perflourinated alkyl layer. The perfluorinated alkyl layer is preferably decomposed on the diamond-like carbon surface to cause the fluorination of the surface by atomic F. The method preferably achieves greater than one fluorine atom per surface carbon atom chemisorbed on the diamond-like carbon. The fluorination process produces lubricated diamond-like carbon surfaces that are particularly suitable for computer hard disks.