Abstract:
Potassium zeolites of type L in which the crystals are very flat cylinders of "hockeypuck" or "coin" shape may be prepared by adjusting the K.sub.2 O/SiO.sub.2 and SiO.sub.2 /Al.sub.2 O.sub.3 ratio and including in the mixture from which the zeolite is crystallized a small amount of divalent cation such as magnesium or barium. The resulting zeolite has a short channel length and is particularly useful as a base for aromatization catalysis.
Abstract:
A novel crystalline aluminosilicate zeolite characterized by having a composition of the following general formula expressed in terms of the mole ratios of oxides in the anhydrous statexM.sub.2/n O.Al.sub.2 O.sub.3.ySiO.sub.2wherein M represents at least one cation having a valence of n, x is a number between 0.5 and 4, and y is a number of at least 10, and having a specific X-ray diffraction pattern. Said crystalline aluminosilicate zeolite can be produced by maintaining a mixture of a water-soluble alkali metal compound, an N,N,N,N',N',N'-hexamethyl-1,6-hexane diammonium compound, a compound capable of giving silica under the reaction conditions, a compound capable of giving alumina under the reaction conditions and water, at a temperature of at least 80.degree. C. for a period sufficient to form crystals, and is useful as a catalyst for, for example, transalkylation or alkylation reaction of toluene, isomerization of xylene, isomerization of ethylbenzene to xylenes, etc.
Abstract:
A high surface area perovskite catalyst comprises a perovskite containing at least one transition metal composited with a spinel-coated metal oxide support. The catalyst is prepared by forming a surface spinel on a metal oxide and subsequently co-impregnating or co-depositing the appropriate perovskite precursor component on the spinel coated metal oxide, followed by calcination at a temperature of at least 540.degree. C. A preferred catalyst is LaCoO.sub.3 supported on a spinel-covered alumina.
Abstract:
Process for the production of alkyl benzenes wherein norbornenes are passed under superatmospheric pressure through a hydrogenation catalyst in the presence of hydrogen at a relatively low temperature i.e. 50*-250*C. and then passed through a reforming catalyst at a higher temperature i.e. 400*600*C. and the alkyl benzenes are recovered.
Abstract:
Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, including cyclopentadiene, and formulated catalyst compositions for use in such process. The process comprises contacting the feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form the product. The catalyst composition comprises a microporous crystalline metallosilicate, a Group 10 metal or compound thereof, a binder, optionally, a metal selected from the group consisting of rare earth metals, metals of Groups 8, 9, or 11, mixtures or combinations thereof, or a compound thereof, in combination with a Group 1 alkali metal or a compound thereof and/or a Group 2 alkaline earth metal or a compound thereof.
Abstract:
Disclosed are processes for regenerating catalysts comprising at least one Group 10 metal and a microporous crystalline aluminosilicate having a having a molar ratio of Group 10 metal to Al of greater than or equal to about 0.007:1, and hydrocarbon conversion processes including such regeneration processes. In an aspect, the regeneration processes comprise an oxychlorination step comprising contacting the catalyst with a first gaseous stream comprising a chlorine source and an oxygen source under conditions effective for dispersing at least a portion of the at least one Group 10 metal on the surface of the catalyst and for producing a first Group 10 metal chlorohydrate. The processes further comprise a chlorine stripping step comprising contacting the catalyst with a second gaseous stream comprising an oxygen source, and optionally a chlorine source, under conditions effective for increasing the O/Cl ratio of the first Group 10 metal chlorohydrate to produce a second Group 10 metal chlorohydrate.
Abstract:
A process for aromatizing hydrocarbons comprises: converting at least a portion of highly branched hydrocarbons in a feed stream into selectively convertible components, and aromatizing the selectively convertible components to produce an aromatization reactor effluent. The aromatization reactor effluent comprises an aromatic product. Converting at least the portion of the highly branched hydrocarbons into the selectively convertible components may include contacting the feed stream with an isomerization catalyst in an isomerization reaction system under isomerization reaction conditions; and isomerizing the portion of the highly branched hydrocarbons in the feed stream into the selectively convertible components.