Abstract:
The present invention provides a grease composition or a lubricating oil composition which is capable of effectively preventing hydrogen brittleness-caused peeling from occurring on a rolling surface of a rolling bearing, is excellent in durability in a high temperature and speed operation, and can be used for a long time. A grease-packed bearing (1) has an inner ring (2), an outer ring (3), and a plurality of rolling elements (4). A sealing member (6) for sealing a grease composition (7) is provided at openings (8a) and (8b) disposed at both axial ends of the inner ring (2) and the outer ring (3). The grease composition (7) includes a base grease composed of a base oil and a thickener and an additive added to the base grease. The additive contains at least one compound selected from among plant-derived polyphenolic compounds and compounds formed by decomposition thereof. The above-described compounds include tannin, gallic acid, ellagic acid, chlorogenic acid, caffeic acid, curcumin, quercetin, and quinic acid.
Abstract:
A lubricant composition, comprising an oil of lubricating viscosity, a dispersant comprising the condensation product of a carboxylic-functionalized polymer with an aromatic moiety through an amide, imide, or ester linkage, and an oil-soluble titanium compound, exhibits good oxidative stability.
Abstract:
An unsulfurized, alkali metal-free, detergent-dispersant composition having from 40% to 60% alkylphenol, from 10% to 40% alkaline earth alkylphenate, and from 20% to 40% alkaline earth single aromatic-ring alkylsalicylate. This composition may have an alkaline earth double aromatic-ring alkylsalicylate as long as the mole ratio of single-ring alkylsalicylate to double aromatic-ring alkylsalicylate is at least 8:1. This composition may be produced by the three-step process involving neutralization of alkylphenols, carboxylation of the resulting alkylphenate, and filtration of the product of the carboxylation step.
Abstract:
A lubricating oil composition comprises (A) a base oil, (B) a 3-methyl-5-tert-butyl-4-hydroxyphenyl substituted fatty acid ester in an amount of 0.1-5 percent by mass and (C) an auxiliary component, said auxiliary component being one member of the group of (a) a nitrogen-containing compound in an amount of 0.001-1 percent by mass, (b) a sulfur and/or phosphorus-containing compound in an amount of 0.1-5.0 percent by mass or (c) a phenolic compound in an amount of 0.1-5.0 percent by mass. This composition features the combination with a base oil of these specified components whereby there is provided synergistic effect conducive to inhibition or prevention of both oxidation and sludge formation while in use under elevated temperature conditions over extended periods of time.
Abstract:
Improved rolling oil compositions are obtained by blending a petroleum base oil with a polymeric fatty acid, a fatty alcohol and lower alkyl ester of a fatty acid. These formulations are extremely effective for use in the cold rolling of aluminum and aluminum alloys.
Abstract:
A lubricating composition comprising an oil of lubricating viscosity, 1 to 1000 parts per million by weight of titanium in the form of an oil-soluble titanium-containing material, and at least one additional lubricant additive provides beneficial effects on properties such as deposit control, oxidation, and filterability in engine oils.
Abstract:
This invention relates to the use of a metallic or non-metallic detergent which is a hydrocarbyl-substituted salicylic acid or a derivative thereof in a non-aqueous lubricant composition as an inhibitor of lead corrosion associated with ashless, organic ester, anti-wear additives and/or friction modifiers.
Abstract:
A lubricating oil composition and method of operating a spark ignition combustion engine. The lubricating oil composition includes a major amount of a base oil of lubricating viscosity and an additive composition that includes an over-based detergent and a low-based/neutral detergent, wherein a total amount of calcium from the over-based and low-based/neutral detergent ranges from greater than 1100 ppm by weight to less than 2400 ppm by weight based on a total weight of the lubricating oil composition. The lubricating oil composition is effective to reduce low-speed pre-ignition events in a turbocharged gasoline engine lubricated with the lubricating oil composition.
Abstract:
The present invention relates to a cold rolling process for rolling hard metal or metal alloys, comprising applying an effective amount of an oil composition comprising a base stock oil and, based on the total weight of the composition, from 1 to 80% by weight of di(2-ethylhexyl) adipate. Example of hard metals include steel and nickel.