摘要:
A laser oscillation device can prevent a laser medium-circulating pipe from expanding. The laser oscillation device includes a resonator part, which has an introduction port, through which a laser medium is introduced, and a discharge port, from which the laser medium is discharged, and which generates a laser beam, a laser medium-circulating pipe having one end connected to the introduction port, and the other end connected to the discharge port, a blower arranged in the laser medium-circulating pipe, to circulate the laser medium so that the laser medium is introduced from the introduction port to the resonator part, and the laser medium introduced to the resonator part is discharged from the discharge port, and a heat-insulating mechanism which is provided in the laser medium-circulating pipe, to block heat conduction between the laser medium flowing through the laser medium-circulating pipe and the laser medium-circulating pipe.
摘要:
Geometrical design of laser microchips is disclosed that allows variation of the optical path length in the different media by simple displacement of the microchip, the movement having a non-zero projection orthogonal to the pump beam. The concept can be implemented to vary optical loss in the lasing cavity, the absorbed pump power, or the optical length of the cavity. Passively Q-switched microchip laser output performance can thus be controlled by simple transverse displacement of the microchip relative to the pump beam. The above microlaser can be combined with voltage-controlled variable-focus output optics in order to control the peak power density of the laser pulses.
摘要:
A laser system and method. The inventive laser includes an annular gain medium; a source of pump energy; and an arrangement for concentrating energy from the source on the gain medium. In a more specific implementation, a mechanism is included for rotating the gain medium to effect extraction of pump energy and cooling. In the illustrative embodiment, the pump source is a diode array. Energy from the array is coupled to the medium via an array of optical fibers. The outputs of the fibers are input to a concentrator that directs the pump energy onto a pump region of the medium. In the best mode, plural disks of gain media are arranged in an offset manner to provide a single resonator architecture. First and second mirrors are added to complete the resonator. In accordance with the inventive teachings, a method for pumping and cooling a laser is taught. In the illustrative embodiment, the inventive method includes the steps of providing a gain medium; pumping energy into a region of the gain medium; moving the medium; extracting energy from the region of the medium; and cooling region of the medium.
摘要:
Application of a modular coaxial package design, compatible with telecommunication passive component packaging, to microchip lasers, in particular to passively Q-switched microlasers, pumped with a fiber-coupled diode, is disclosed. The number of parts is thereby reduced while providing the adequate degrees of freedom for the active or passive alignment of the optical elements within the package.
摘要:
Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.
摘要:
In order to avoid problems associated with thermal distortion, loss of energy, and destruction of system components, the invention provides a means for producing, for the first time, high repetition rate, high power pulses while avoiding thermal distortion and its attendant difficulties. The invention provides the ability to remove heat generated from the gain media (lasant material) and to repeatedly extract energy from the media without the accumulation of heat in the media which causes thermal distortions. The invention avoids thermal distortions by pumping an unheated gain region every time an optical pulse is incident thereon. In one aspect, the gain media is essentially uniformly pumped using an essentially instantaneous uniform spatial profile provided by a multi-mode oscillator. The resulting instantaneous uniform temperature profile does not create thermal gradients, thus, no thermal distortions occur. In the invention, the total time duration of pumping and lasing or amplification takes place while the thermal profile remains uniform in the region of the media in the beam path. Thus, no thermal distortions occur during the time of pumping and lasing or amplification. Heat is preferably extracted at about the same rate it is generated in the lasant material (media).
摘要:
An laser with improved output power is provided. The laser comprises: a cylindrical laser medium mounted on the shaft of a motor; a resonator including a pair of mirrors provided adjacent the opposite ends of the cylindrical face of the laser medium; and a multiplicity of laser diodes angularly spaced along the circumference of the cylindrical medium and upstream of the resonator in the sense of the rotation. The laser diodes optically pump regions of the medium facing the diodes. By rotating the cylindrical medium at a high speed, the pumped region of the medium will be brought into the resonator within the life lime of excitation, thereby increasing inverted distribution of energy per unit time. The pumped regions sequentially undergo laser emission, providing increased laser output power.
摘要:
In a laser generator for generating short high peak power pulses of lasant radiation, a mode-locked laser oscillator generator generates a train of short pulses to be amplified. The pulses to be amplified, as of 10 ps pulse width, are temporally spaced by the optical resonator round-trip time, i.e., six ns for a three meter long optical resonator. The pulses to be amplified are then injected into a moving slab Q-switched laser oscillator for seeding thereof and amplification therein. The temporal spacing of the injected pulses is matched to the round-trip time of the optical resonator of the moving slab laser oscillator for mode-locking the moving slab oscillator to efficiently achieve 100 dB of gain in the amplified pulses. The resultant amplified pulses have a peak power as of 500 MW. By chirping and broadening of the pulses to 300 ps before amplification, followed by pulse width compression in a grating pair, pecosecond pulses are generated of 150 GW peak power.
摘要:
A moving solid state laser gain structure is optically pumped by optical pumping radiation derived from a remote bank of diodes, preferably laser diodes. The pumping radiation is guided and concentrated from the bank to the laser gain structure over a bundle of fiber optic waveguides. In some embodiments, the laser gain structure is a slab of Nd:Glass or Nd:YAG. In some embodiments, the lasant beam is internally reflected within the slab over a zig-zag path. In one embodiment, the lasant slab is a rotating and translating disk with the pumping radiation being applied collinearly of the beam of lasant radiation. In another embodiment, the lasant slab is made up of a bundle of fiber optic waveguides.
摘要:
A solid-state laser having a smoothly moving lasing material. A closely toleranced, fluid-bearing assembly extends around the slab of moving lasing material for both supporting and cooling the slab of material with a film of a thermally conductive fluid, such as helium. The lasing means, which causes a portion of the lasing material to heat, is immediately adjacent the fluid-bearing assembly, and the heated lasing material is moved into the fluid-bearing assembly for cooling as soon as possible after it has been heated by the lasing operation. The slab of lasing material can be in the form of a rectangular block or a ring with a rectangular cross section. In the first case, the slab of lasing material is moved through the fluid-bearing assembly in a back-and-forth motion by a transport mechanism. In the second case, the ring is cooled by driving it through the fluid-bearing assembly in a single direction.