-
公开(公告)号:WO1998018167A1
公开(公告)日:1998-04-30
申请号:PCT/GB1997002919
申请日:1997-10-22
Applicant: UNIVERSITY OF SURREY , LEONG, Daniel , HARRY, Milton, Anthony , HOMEWOOD, Kevin , REESON, Karen, Joy
Inventor: UNIVERSITY OF SURREY
IPC: H01L31/103
CPC classification number: H01L33/34 , H01L31/032 , H01L31/068 , H01L31/103 , H01L31/107 , H01L33/0008 , H01L33/0033 , Y02E10/547
Abstract: An optoelectronic semiconductor device in the form on an LED comprises a silicon p-n junction (10) having a photoactive region (18) containing beta-iron disilicide ( beta -FeSi2). The LED produces electroluminescence at a wavelength of about 1.5 mu m. Photodectector devices are also described.
Abstract translation: 在LED的形式的光电子半导体器件包括具有含有β-铁二硅化物(β-FeSi 2)的光活性区域(18)的硅p-n结(10)。 LED产生波长约1.5μm的电致发光。 还描述了光电探测器装置。
-
公开(公告)号:WO1997049132A1
公开(公告)日:1997-12-24
申请号:PCT/US1997011959
申请日:1997-06-20
Applicant: FREY, Jeffrey
IPC: H01L29/06
CPC classification number: H01L31/113 , B82Y10/00 , H01L31/0352 , H01L33/0041 , H01L33/06 , H01L33/34
Abstract: This invention relates to the field of semiconductor devices. Silicon-based semiconductor devices ordinarily lack desirable optical properties because silicon's small, indirect band gap causes electrons to emit radiation with negligible quantum efficiency. This invention solves that problem by taking advantage of the change in the nature of the electron band gap when electron flow is confined within a one-dimensional channel known as a quantum wire (11). By biasing the junction (13) between the quantum wire (11) and the surrrounding silicon support matrix (12) with a voltage, a semiconductor device of this invention emits radiation of a variable and modulable wavelength, including visible light, as well as of a variable and modulable intensity. Alternatively, the working of the device may be reversed such that it detects incoming radiation. Given its optical properties, such a device has numerous applications in the field of optoelectronics and integrated circuits.
Abstract translation: 本发明涉及半导体器件领域。 硅基半导体器件通常缺乏期望的光学性质,因为硅的小的间接带隙导致电子以可忽略的量子效率发射辐射。 本发明通过利用当电子流限制在称为量子线(11)的一维通道内的电子带隙性质的变化来解决该问题。 通过用电压偏置量子线(11)和周围硅支撑矩阵(12)之间的结(13),本发明的半导体器件发射包括可见光的可变和可调波长的辐射,以及 一个变量和可调整的强度。 或者,可以颠倒设备的工作,以便它检测进入的辐射。 鉴于其光学特性,这种器件在光电子学和集成电路领域具有许多应用。
-
公开(公告)号:WO1996028852A1
公开(公告)日:1996-09-19
申请号:PCT/JP1995000435
申请日:1995-03-15
Applicant: HITACHI, LTD. , NAKAGAWA, Kiyokazu , NISHIDA, Akio , KIMURA, Yoshinobu , TAKAGI, Kazumasa
Inventor: HITACHI, LTD.
IPC: H01L33/00
CPC classification number: H01L33/34 , B82Y20/00 , H01S5/0262 , H01S5/0424 , H01S5/18319 , H01S5/18341 , H01S5/3427
Abstract: A semiconductor optical device which uses a mixed crystal comprising Ge, C, Sn, etc., of Group IV semiconductors having a different atomic radius from that of Si as a light emission layer, disposes light emission layers at a period of integral multiples of the half of the light emission wavelength, and separates the light emission layer from a light modulation region. Since a multi-layered structure of the Group IV semiconductors such as Si and Ge, C, Sn is used, local strain due to a difference in atomic radius increases light emission efficiency, and the multi-layered film functions as an interference device of light. Because only light with a wavelength twice this period can exist inside the multi-layered film, light emission efficiency can be increased. Further, since the multi-layered structure has a periodical structure which is integral multiples of the half of the light emission wavelength, the light emission intensity can be increased. Since the light emission region and the light modulation region are formed adjacent to each other on the same substrate, a semiconductor optical device capable of high-speed light modulation can be accomplished. Because this structure can extremely reduce lattice mismatching with the substrate, no limitation on a layer thickness such as a critical film thickness exists. Accordingly, a design freedom for a film thickness for confining light and carriers and a band discontinuity value can increase, and a light emission intensity can be improved to about ten times that with the prior art devices.
Abstract translation: 使用具有与Si的原子半径不同的第IV族半导体的Ge,C,Sn等的混晶作为发光层的半导体光学器件,以发光层的整数倍的周期配置发光层 一半的发光波长,并且将发光层与光调制区域分离。 由于使用诸如Si和Ge,C,Sn的IV族半导体的多层结构,因原子半径的差异导致的局部应变增加了发光效率,并且多层膜用作光的干涉装置 。 因为在多层膜内只能存在波长为两倍的波长的光,所以可以提高发光效率。 此外,由于多层结构具有作为发光波长的一半的整数倍的周期结构,所以可以提高发光强度。 由于发光区域和光调制区域在相同的基板上彼此相邻地形成,因此可以实现能够进行高速调光的半导体光学器件。 因为这种结构可以极大地减少与衬底的晶格失配,所以不存在诸如临界膜厚度等层厚度的限制。 因此,用于限制光和载流子的膜厚度的设计自由度和带不连续值可以增加,并且发光强度可以提高到现有技术装置的约10倍。
-
公开(公告)号:WO2018195703A1
公开(公告)日:2018-11-01
申请号:PCT/CN2017/081658
申请日:2017-04-24
Applicant: 苏州晶湛半导体有限公司
IPC: H01L33/00
CPC classification number: H01L23/562 , H01L21/02378 , H01L21/02381 , H01L21/02389 , H01L21/0242 , H01L21/0245 , H01L21/02452 , H01L21/02458 , H01L21/02477 , H01L21/0251 , H01L21/0254 , H01L29/2003 , H01L33/12 , H01L33/32 , H01L33/34
Abstract: 本发明公开了一种半导体结构和制备半导体结构的方法,解决了外延结构易龟裂、翘曲大以及位错密度大的问题。该半导体结构包括:衬底;以及设置在所述衬底上方的至少一个组成调制层;其中,每一个所述组成调制层的材料为半导体化合物,所述半导体化合物至少包括第一元素和第二元素,其中所述第一元素的原子序数小于所述第二元素的原子序数;其中,在每一个所述组成调制层中沿所述衬底的外延方向上,所述第一元素在化合物组成中的原子个数百分比先逐渐减少再逐渐增大,所述逐渐减少阶段的厚度大于逐渐增大阶段的厚度,逐渐增大后的原子个数百分比小于等于逐渐减少之前的原子个数百分比。
-
公开(公告)号:WO2018049434A2
公开(公告)日:2018-03-15
申请号:PCT/ZA2017/050052
申请日:2017-09-05
Applicant: UNIVERSITY OF SOUTH AFRICA
Inventor: SNYMAN, Lukas, Willem
CPC classification number: H01L33/0004 , H01L33/025 , H01L33/34
Abstract: The invention provides a silicon pn based device with different dopant and impurity implanted concentrations strategically placed in the device, the pn junction being reverse biased, such that the 650nm optical emission is stimulated and enhanced. The invention extends to a silicon avalanche light emitting device comprising a first junction and a second junction, said first junction including a reverse biased excitation zone for injecting high energy carriers in a first direction and said second junction being forward biased so as to inject high density low energy carriers opposite to said first direction, wherein an interaction zone is formed between said first junction and said second junction so as to enhance emission of 650nm photons through interactions between said high energy carriers and said low energy carriers.
Abstract translation: 本发明提供了一种基于硅pn的器件,其具有策略性地放置在器件中的不同掺杂剂和杂质注入浓度,pn结被反向偏置,使得650nm光发射被刺激和增强。 本发明延伸到包括第一结和第二结的硅雪崩发光器件,所述第一结包括用于沿第一方向注入高能载流子的反向偏置激发区,并且所述第二结被正向偏置以便注入高密度 与所述第一方向相反的低能量载流子,其中在所述第一结与所述第二结之间形成相互作用区,以便通过所述高能载流子与所述低能载流子之间的相互作用增强650nm光子的发射。 p>
-
公开(公告)号:WO2016069831A1
公开(公告)日:2016-05-06
申请号:PCT/US2015/057939
申请日:2015-10-29
Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
Inventor: LIEBER, Charles, M. , GAO, Ruixuan , MANKIN, Max, Nathan , DAY, Robert , PARK, Hong-Gyu , NO, You-Shin
CPC classification number: H01L21/02653 , B82Y10/00 , B82Y40/00 , C23C16/402 , C23C16/45525 , C23C16/56 , C30B25/20 , C30B29/06 , C30B29/66 , C30B33/10 , H01L21/02164 , H01L21/0228 , H01L21/02381 , H01L21/02433 , H01L21/02532 , H01L21/02584 , H01L21/02603 , H01L29/0649 , H01L29/068 , H01L29/16 , H01L29/365 , H01L29/66136 , H01L29/861 , H01L31/02161 , H01L31/028 , H01L31/035227 , H01L31/035272 , H01L31/1804 , H01L33/0054 , H01L33/025 , H01L33/06 , H01L33/18 , H01L33/34 , H01L33/44 , H02S40/44
Abstract: The present invention generally relates to nanoscale wires and, in particular, to nanoscale wires with heterojunctions, such as tip- localized homo- or heterojunctions. In one aspect, the nanoscale wire (10) may include a core (20), an inner shell (30), preferably insulating, surrounding the core, and an outer shell (40) surrounding the inner shell. The outer shell contacts the core at an end portion of the nanoscale core. In some cases, such nanoscale wires may be used as electrical devices. For example a p-n junction may be created where the inner shell is electrically insulating, and the core and the outer shell are p-doped and n-doped. Other aspects of the present invention generally relate to methods of making or using such nanoscale wires, devices, or kits including such nanoscale wires, or the like.
Abstract translation: 本发明一般涉及纳米线,特别涉及具有异质结的纳米线,例如尖端局部均匀或异质结。 在一个方面,纳米线(10)可以包括芯(20),优选地围绕芯的绝缘的内壳(30)和围绕内壳的外壳(40)。 外壳在纳米级芯的端部处与芯接触。 在某些情况下,这种纳米尺寸的导线可以用作电气装置。 例如,可以产生p-n结,其中内壳是电绝缘的,并且芯和外壳是p掺杂和n掺杂的。 本发明的其它方面通常涉及制造或使用这种纳米尺寸线,器件或包括这种纳米线的套件等的方法。
-
公开(公告)号:WO2015039618A1
公开(公告)日:2015-03-26
申请号:PCT/CN2014/086873
申请日:2014-09-18
Applicant: 中国科学院苏州纳米技术与纳米仿生研究所
IPC: H01S1/02 , H01L29/778
CPC classification number: H01L33/105 , H01L29/42316 , H01L29/778 , H01L33/0041 , H01L33/0095 , H01L33/06 , H01L33/26 , H01L33/28 , H01L33/30 , H01L33/32 , H01L33/34 , H01L33/54 , H01L33/58 , H01S1/02
Abstract: 一种太赫兹光源芯片、光源器件、光源组件及其制造方法,光源芯片包括:二维电子气台面(1);形成在二维电子气台面(1)上的用于激发等离子体波(6)的电极;形成在二维电子气台面(1)下方的太赫兹谐振腔(3),谐振腔(3)底面设置有全反射镜(4);以及光栅(2),其形成在二维电子气台面(1)上,用于将等离子体波模式与太赫兹谐振腔腔模相耦合,以产生太赫兹波发射。利用太赫兹谐振腔腔模与光栅下二维电子气内的等离子体波模式的强耦合形成等离极化激元,通过等离极化激元的电学激发产生太赫兹波发射,避免了依靠单个电子的高频振荡或单个电子的量子跃迁产生太赫兹发射存在频率低或工作温度低的问题,扩大了发射频率范围和工作温度范围。
-
公开(公告)号:WO2014142338A1
公开(公告)日:2014-09-18
申请号:PCT/JP2014/057209
申请日:2014-03-17
Applicant: 独立行政法人産業技術総合研究所
CPC classification number: H01L33/343 , H01L33/34 , H01L33/50 , H01L33/508
Abstract: 本発明の白色発光素子は、基体(101)と、前記基体(101)上に配され、該基体(101)側から、一つまたは複数のp型のα層(102)、p型またはn型のγ層(103)、一つまたは複数のn型のβ層(104)が順に積層されてなるダイヤモンド半導体層(105)と、前記α層(102)に配された、電流を注入するための第一電極(106)と、前記β層(104)に配された、電流を注入するための第二電極(107)と、前記ダイヤモンド半導体層の表面における発光の取り出し領域を覆う蛍光部材(108)と、を備えている。
Abstract translation: 该白色发光元件设置有:基板(101); 通过从基板(101)依次层叠一个或多个p型α层(102),p型或n型γ层(103)而得到的金刚石半导体层(105),以及 一个或多个n型&bgr; 层(104),所述金刚石半导体层(105)设置在所述基板(101)上; 用于注入电流的第一电极(106),所述第一电极(106)设置在所述α层(102)上; 用于注入电流的第二电极(107),所述第二电极(107)设置在所述第二电极(107)上。 层(104); 以及用于覆盖金刚石半导体层的表面的发光提取区域的荧光部件(108)。
-
公开(公告)号:WO2013118248A1
公开(公告)日:2013-08-15
申请号:PCT/JP2012/052642
申请日:2012-02-06
CPC classification number: H01S5/3223 , H01L33/34 , H01L33/38 , H01S5/0206 , H01S5/021 , H01S5/0424 , H01S5/1228 , H01S5/125 , H01S5/2272
Abstract: Ge発光層に電子を効率良く注入し、高効率で発光可能な発光素子を提供するために、絶縁膜2上に形成され、量子閉じ込め効果が発現するサイズに加工された単結晶Siのバリア層3と、バリア層3の両端にそれぞれ設けられたp型拡散層電極5とn型拡散層電極6と、電極5、6の間のバリア層3上に設けられた単結晶Ge発光部9とを有し、電極5、6の間に流れる電流の少なくとも一部は、バリア層3内を基板1に対して水平方向に流れる。
Abstract translation: 为了提供有效地将电子注入到Ge发光层中并且能够高效发光的发光元件,发光元件具有:形成在绝缘膜上的单晶Si势垒层(3) 2)并加工成尺寸,从而显示量子限制效应; 分别设置在阻挡层(3)的两端的p型扩散层电极(5)和n型扩散层电极(6) 以及设置在电极(5,6)之间的阻挡层(3)上的单晶Ge发光部(9)。 在电极(5,6)之间流动的电流的至少一部分在阻挡层(3)的内部流动,与基板(1)水平。
-
公开(公告)号:WO2013088490A1
公开(公告)日:2013-06-20
申请号:PCT/JP2011/078677
申请日:2011-12-12
CPC classification number: H01L33/34 , H01L31/035272 , H01L31/103 , H01L33/44 , H01S5/021 , H01S5/2214 , H01S5/3211 , H01S5/3219 , H01S5/3223 , H01L2924/01032 , H01L2924/10252
Abstract: 発光層あるいは光吸収層とクラッド層との界面における転位や結晶欠陥の発生を低減・防止し、発光効率が高い或いは低消費電力で信頼性の高いシリコン・ゲルマニウム半導体光素子を提供するために、シリコン・ゲルマニウム半導体光素子において、基板の上部に配置されるゲルマニウム発光層あるいは光吸収層10とクラッド層12との間に、ゲルマニウム発光層あるいは光吸収層10とは導電性が異なり、非発光のゲルマニウム保護層11を配置する。
Abstract translation: 提供了一种高度可靠的硅锗半导体光学元件,其减少/消除了在包层和发光层或光吸收层之间的界面处产生位错和晶体缺陷,并且具有高发光效率或低功耗 。 在本发明的硅锗半导体光学元件中,在设置在基板的上方的包覆层(12)和锗发光层或光吸收层(10)之间,设置锗保护层(11) 所述锗保护层具有不同于锗发光层或光吸收层(10)的导电性,并且不发光。
-
-
-
-
-
-
-
-
-