摘要:
In a workpiece processor (10), a head (12) is moveable onto a bowl (56) to form a process chamber (58). A workpiece (100) can be cleaned in the processor by immersing the workpiece into a liquid bath in the bowl and then boiling the liquid. Vacuum may be applied to the chamber to reduce the pressure within the chamber, thereby reducing the boiling temperature of the liquid and allowing processing at lower temperatures. In a separate method for prewetting a workpiece, a humid gas is provided into the process chamber and condenses on the workpiece. In another separate method for wetting a workpiece, liquid water is provided into the bowl, with the workpiece above the liquid water. Water vapor is created in the process chamber by applying vacuum to the process chamber. The vapor wets the workpiece. The workpiece is then further wetted by submerging the workpiece into the liquid water.
摘要:
Compositions and methods for removing lanthanoid-containing solids and/or species from the surface of a microelectronic device or microelectronic device fabrication hardware. Preferably, the lanthanoidcontaining solids and/or species comprise cerium. The composition is preferably substantially devoid of fluoride ions.
摘要:
Provided is a chemical mechanical polishing (CMP) pad conditioner including: a substrate including a plurality of protrusions formed on at least one surface thereof and made of ceramic or hard metal alloy, the plurality of protrusions being formed through laser processing so as not to have angled edges on an upper end and an inclined side thereof; and a diamond thin film deposited so as to cover the plurality of protrusions, wherein the diamond thin film includes a rough polishing surface on which micro protrusions having a size of several ? are formed.
摘要:
A uniform Si-NH-Si terminated Si(111) surface is formed by contacting a chlorine-terminated silicon surface with ammonia and a solvent such as an ether.
摘要:
Systems and methods for improving surface reflectance of silicon wafers are disclosed. The systems and methods improve surface reflectance by forming a textured surface on the silicon wafer by performing surface oxidation and dry etching processes. The surface oxidation maybe performed using a dry oxygen plasma process. A dry etch process is performed to remove the oxide layer formed by the surface oxidation step and etch the Silicon layer with oxide masking. Dry etching enables black silicon formation, which minimizes or eliminates light reflection or scattering, eventually leading to higher energy conversion efficiency.
摘要:
A method for forming a fine pattern on a substrate includes providing a substrate including a material with an initial pattern formed thereon and having a first line width, performing a self-limiting oxidation and/or nitridation process on a surface of the material and thereby forming an oxide, a nitride, or an oxynitride film on a surface of the initial pattern, and removing the oxide, nitride, or oxynitride film. The method further includes repeating the formation and removal of the oxide, nitride, or oxynitride film to form a second pattern having a second line width that is smaller than the first line width of the initial pattern. The patterned material can contain silicon, a silicon-containing material, a metal, or a metal-nitride, and the self-limiting oxidation process can include exposure to vapor phase ozone, atomic oxygen generated by non-ionizing electromagnetic (EM) radiation, atomic nitrogen generated by ionizing or non-ionizing EM radiation, or a combination thereof.
摘要:
A method for processing a semiconductor wafer comprises providing the semiconductor wafer, which has a curvature in at least one direction. The curvature is reduced, which comprises providing in inactive areas of the semiconductor wafer multiple trench lines extending at least partially in a stressed layer of the semiconductor wafer and in parallel with the surface of the stressed layer. The multiple trench lines having a depth less than the thickness of the semiconductor wafer. A semiconductor wafer, comprising multiple active areas suitable for providing semiconductor devices or circuits. Inactive areas separate the active areas from each other. The wafer has a stressed layer with a first surface, and another layer which is in contact with the stressed layer along a second surface of the stressed layer, opposite to the first surface. Multiple trench lines, extend in parallel to the first surface of the stressed layer in an inactive area and have a depth less than the thickness of the semiconductor wafer.