Abstract:
A method for determining a biological response of a target (41, 42) to a soluble candidate substance comprises the steps: introducing a soluble candidate substance into a laminar flow of a buffer liquid (2) to form a candidate substance solute (3) having an initial concentration profile (31); dispersing the initial concentration profile (31) to form a dispersed concentration profile (32); directing the dispersed concentration profile (32) into a detection channel (12) to form a final symmetrical concentration profile (33) therein; introducing a target into the detection channel (12) to obtain a combined concentration profile comprising a constant target concentration profile overlying the final symmetrical concentration profile (33); holding in the detection channel (12) at least one half of the combined concentration profile; and optically scanning the combined concentration profile to detect an optical signal representative of the biological response of the target to the soluble candidate substance.
Abstract:
Fluidic cartridges, and manufacture thereof, having a plurality of circuit element subtypes containing pneumatically operated diaphragm members, where the diaphragm materials are selected for yield point, chemical resistance, breathability and other properties individually according to the fluidic element subtype are provided. A process of in-situ edge-bonded decoupage for forming diaphragm members inside a cartridge, and fluidic circuits having diaphragm members as active and passive circuit elements, including pumps, valves, vents, waste receptacles, reagent reservoirs, and cuvettes with optical windows, where the material composition of each individual diaphragm member may be selected from an assortment of materials during manufacture are also provided.
Abstract:
The invention generally relates to methods for quantifying an amount of enzyme molecules. Systems and methods of the invention are provided for measuring an amount of target by forming a plurality of fluid partitions, a subset of which include the target, performing an enzyme-catalyzed reaction in the subset, and detecting the number of partitions in the subset. The amount of target can be determined based on the detected number.
Abstract:
A repeatable method for detecting circulating tumor cells in vitro is provided. The method involves combining a test sample from a patient suspected of having circulating tumor cells, and a non-lytic adenoviral system, and culture media for the cells. The adenoviral system utilizes (i) a first replication-defective adenoviral particle in which an expression cassette is packaged, said expression cassette comprising an adenoviral 5' and 3' ITRs and a tumor-specific promoter; and (ii) a coding sequence for a Teporter protein which is expressed in the presence of circulating tumor cells, and an adenoviral 3' ITR. The test sample and the non-lytic adenoviral system are incubated for a sufficient time to permit expression of the reporter protein, and measuring reporter protein expression in the test samples, whereby presence of reporter expression indicates the presence of circulating tumor cells in the sample.
Abstract:
A honeycomb tube with a planar frame defining a fluidic path between a first planar surface and a second planar surface. A fluidic interface is located at one end of the planar frame. The fluidic interface has a fluidic inlet and fluidic outlet. The fluidic path further includes a well chamber having an well-substrate with a plurality of wells. The well chamber is arranged in the planar frame between the first or second surface and the well-substrate.
Abstract:
Multiple probes/primers expand the capability of single-probe real-time PCR. Multiplex real-time PCR uses multiple probe-based assays, in which each assay have a specific probe labeled with a unique fluorescent dye, resulting in different observed colors for each assay. Real-time PCR instruments can discriminate between the fluorescence generated from different dyes. Different probes/primers are labeled with different dyes that each have unique emission spectra. By combining the encoded microbeads and real-time PCR amplification, it is possible to increase the multiplexity of PCR experiments to a very large number, such as 128 with 7 digit or 4,096 with 12-digit barcode. Oligonucleotide probes/primers labeled with encoded microbeads offer the ability to monitor the reaction kinetics of each probe which is tagged with barcoded beads.
Abstract:
System, including methods and apparatus, for forming droplets of an emulsion. The system may include a channel junction at which a stream of sample fluid is divided into droplets by a dividing flow of carrier fluid. The system also may include one or more features configured to position sample fluid for reduced contact between the sample fluid and one or more surface regions of the channel junction, which may improve the consistency of droplet formation. In exemplary embodiments, sample fluid may be positioned by a step member produced by an increase in channel depth, and/or by directing flow of carrier fluid to form a barrier layer between sample fluid and a wall region, such as a ceiling region or floor region, of a channel network.
Abstract:
A method of charging a substrate with a plurality of through-going bores and a charged substrate, where the substrate is charged with a liquid comprising particles in a concentration resulting in a high percentage of bores charged with liquid with only a single particle therein.
Abstract:
A micro well plate is described for capturing and distributing single cells in individual wells is described, wherein at least one individual well is provided with a bottom plate having at least one pore to pass sample liquid, such that if one object or cell of interest is collected on the bottom plate of the well, the sample flow rate through that particular well is significantly reduced, minimizing the possibility that multiple cells or objects of interest entering the same well. The presented invention is particularly suited for obtaining single cells and/or microorganisms suspended in fluid samples for subsequent detailed interrogation.
Abstract:
Methods involve forming a droplet, and contacting the droplet with a fluid stream, wherein a portion of the fluid stream integrates with the droplet to form a mixed droplet. Methods for merging two liquid phases in which only one phase is in the form of a droplet at least at the point of merging A second phase is injected into the drops directly from a continuous stream. Methods of the invention provide a simple and reliable approach to sample fluid mixing because only one of the two phases is dispersed as a droplet prior to its merge with the other phase.