Abstract:
A power module is described comprising: a plurality of DC terminals at a first end of the power module for receiving a DC input, wherein the plurality of DC terminals comprise one or more positive DC terminals and one or more negative DC terminals; an AC terminal for providing an AC output; a plurality of first switching elements, electrically connected in parallel, wherein the first switching elements are provided in one or more lines running from the first end of the power module to a second end of the power module, opposite the first end, wherein the first switching elements selectively connect the one or more positive DC terminals to the AC terminal; a plurality of second switching elements, electrically connected in parallel, wherein the second switching elements are provided in one or more lines running from the first end to the second end of the power module, wherein the second switching elements selectively connect the one or more negative DC terminals to the AC terminal; and a first current diverting structure connecting one of the DC terminals at the first end and a first DC terminal point at or near the second end, such that current received at the respective DC terminal is directed to respective switching elements at or near the second end of the power module.
Abstract:
A method for connecting two or more conductors with connection pads to a substrate, comprising the steps of: placing a first connection pad of a first conductor and a second connection pad of a second conductor such that the first connection pad is arranged between the second connection pad and the substrate and subsequently carrying out a welding process, in which the second connection pad and the first connection pad are welded to each other and to the substrate.
Abstract:
A method of assembling a semiconductor component is described, wherein the semiconductor component comprises a substrate and one or more components mounted on the substrate, the method comprising: placing an electrical connection structure on the substrate of the semiconductor component and/or on one or more of the one or more components of the semiconductor component; using a molding press to apply pressure to the electrical connection structure, the substrate and the one or more components of the semiconductor component; and introducing a molding compound into the molding press, thereby encapsulating the semiconductor component.
Abstract:
A power module (1) comprising a group of at least three rectangular electrical power components (11, 12, 13, 14, 23, 24, 25, 26) arranged on a substrate (2), wherein in that at least one side (31) of at least one of the rectangular electrical power components (11, 14) is not orthogonal or parallel to a line (3) that passes through the geometric centres of the remaining rectangular electrical power components (12, 13) of the group.
Abstract:
A flow distributor (1) is provided for distributing a heat transporting fluid flow (2) of an electrical component across a surface to be cooled and/or heated by the fluid. The distributor comprises at least one flow channel configured to direct the fluid flow across the surface, the flow channels being delimited on either side by walls (4) so as to form a path (6) for the fluid flow (2) within the flow channels (3), and comprising wall sections (5) extending into the at least one flow channel (3); and at least one of the wall sections (5) comprises at least one bypass passage (7) to connect two adjacent spaces (8) separated by the wall section (5) where the at least one bypass passage (7) extends from one side of the wall section to the other one with an inclined orientation (10) so as to create a short circuit flow (9) for apart of the fluid flow (2).Furthermore, a method of manufacturing such a flow distributor is provided, having an insert with the wall structure of the inventive flow distributor which is manufactured by injection molding or by 3D-printing.
Abstract:
A method of assembling a semiconductor power module component (30) and a manufacturing system comprising such a semiconductor power module component and a pressing apparatus (20) for manufacturing a semiconductor power module component are described. The semiconductor power module component (30) comprises at least a first element (1) (e.g. a semiconductor chip), a second element (2) (e.g. a substrate, such a DCB substrate) and a third element (3) (e.g. a base plate) arranged in a stack (10). The first element (1) and the second element (2) are joined by sintering in a sintering area (4) and the second element (2) and the third element (3) are joined by soldering in a soldering area (6). The sintering and the soldering are simultaneously executed, wherein the soldering area (6) is heated to a temperature of soldering and the sintering area (4) is heated to a temperature of sintering, the temperature of soldering and the temperature of sintering being harmonized to each other. Pressure is being applied to the stack (10), comprising the at least one soldering area (6) and the at least one sintering area (4) with stabilizing means (7) such as bumps on a surface of the second element (2) or third element (3), solid spacer means incorporated in a solder perform (8) or a wire mesh incorporated in a solder preform (8) being arranged in the soldering area (6). Additional component parts (14, 15) may be sintered onto the first element and/or the second element simultaneously with the sintering and the soldering of the stack (10). The pressure may be applied by a soft cushion-like element (23) surrounding component parts (1, 2, 3, 14, 15) of the module (30).
Abstract:
The present disclosure provides a power module comprising at least one substrate on which at least two semiconductor switches are mounted, wherein the at least two semiconductor switches are configured to operate in parallel, and wherein at least one of a control circuit and a load circuit for the semiconductor switches is designed to minimize a difference between electrical parameters of the at least one circuit for respective semiconductor switches.
Abstract:
Axial bearing arrangement for a drive shaft of a centrifugal compressor The axial bearing arrangement comprises a first axial bearing plate (12) and a second axial bearing plate (13) each having an annular ring shape, the first axial bearing plate (12) having a first surface (12.1) axially facing the second axial bearing plate (13) and a second surface (12.2) opposite to the respective first surface (12.1), the second axial bearing plate (13) having a first surface (13.1) axially facing the first axial bearing plate (12) and a second surface (13.2) opposite to the respective first surface (13.1); a spacer ring (14) clamped between the first surfaces (12.1, 13.1) of the first and second axial bearing plates (12, 13), the spacer ring (14) defining an axial distance between the first and second axial bearing plates (12, 13); and a bearing sleeve (15) abutting the second surface (13.2) of the second axial bearing plate (13) and being secured to a compressor block (16). The axial bearing arrangement includes an elastic element (22) axially biasing the first and second axial bearing plates (12, 13) and the spacer ring (14) with a predetermined force against an abutment surface (17) of the bearing sleeve (15).
Abstract:
A method for manufacturing semiconductor chips (2, 3) having arranged thereon metallic shaped bodies (6), having the following steps: arranging a plurality of metallic shaped bodies (6) on a processed semiconductor wafer while forming a layer arranged between the semiconductor wafer and the metallic shaped bodies (6), exhibiting a first connection material (4) and a second connection material (5), and processing the first connection material (4) for connecting the metallic shaped bodies (6) to the semiconductor wafer without processing the second connecting material (5), wherein the semiconductor chips (2, 3) are separated either prior to arranging the metallic shaped bodies (6) on the semiconductor wafer or after processing the first connection material (4).
Abstract:
A power semiconductor contact structure for power semiconductor modules, which has at least one substrate (1) and a metal moulded body (2) as an electrode, which are sintered one on top of the other by means of a substantially uninterrupted sintering layer (3a) with regions of varying thickness. The metal moulded body (2) takes the form here of a flexible contacting film (5) of such a thickness that this contacting film is sintered with its side (4) facing the sintering layer (3a) onto the regions of varying thickness of the sintering layer substantially over the full surface area. A description is also given of a method for forming a power semiconductor contact structure in a power semiconductor module that has a substrate and a metal moulded body. The forming of the power semiconductor contact structure is performed firstly by applying a layer of sintering material of locally varying thickness to either the metal moulded body (2) or the substrate, followed by sintering together the contacting film (5) with the substrate (1) by using the properties of the layer of sintering material that are conductive to connection, the contacting film (5) being made to develop its distinct form to correspond to the varying thickness of the layer of sintering material (3a).