Abstract:
The invention provides a microfluidic device having a plurality of chambers each containing separately deposited reagents. The invention also provides an efficient PCR-based method for producing a linear expression template. The invention also provides methods for analyzing interactions between molecules, involving flow-deposition of expression templates on the substrate of chambers in a microfluidic device, and expressing proteins from the templates.
Abstract:
A chemostat (Figure 1) that includes a growth chamber having a plurality of compartments, where each of the compartments may be fluidly isolated from the rest of the growth chamber by one or more actuatable valves. The chemostat may also include a nutrient supply-line to supply growth medium to the growth chamber (s), and an output port to remove fluids from the growth chamber. Also, presented is a method to prevent biofilm formation in a growth chamber of the chemostat. The method may include the step of adding a lytic agent to an isolated portion of the growth chamber and re-uniting the isolated portion with the rest of the growth chamber.
Abstract:
This invention relates in general to a method for molecular fingerprinting. The method can be used for forensic identification (e.g. DNA fingerprinting, especially by VNTR), bacteria typing, and human/animal pathogen diagnosis. More particularly, molecules such as polynucleotides (e.g. DNA) can be assessed or sorted by size in a microfabricated device that analyzes the polynucleotides according to restriction fragment length polymorphism. In a microfabricated device according to the invention, DNA fragments or other molecules can be rapidly and accurately typed using relatively small samples, by measuring for example the signal of an optically-detectable (e.g., fluorescent) reporter associated with the polynucleotide fragments.
Abstract:
A method of fabricating an elastomeric structure, comprising : forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A microfluidic device comprises pumps, valves, and fluid oscillation dampers. In a device employed for sorting, an entity is flowed by the pump along a flow channel through a detection region to a junction. Based upon an identity of the entity determined in the detection region, a waste or collection valve located on opposite branches of the flow channel at the junction are actuated, thereby routing the entity to either a waste pool or a collection pool. A damper structure may be located between the pump and the junction. The damper reduces the amplitude of oscillation pressure in the flow channel due to operation of the pump, thereby lessening oscillation in velocity of the entity during sorting process. The microfluidic device may be formed in a block of elastomer material, with thin membranes of the elastomer material deflectable into the flow channel to provide pump or valve functionality. Velocity independent cytometry methods and apparatuses are also described.
Abstract:
A method for fabricating assembled structures. The method includes providing a tip structure, which has a first end, a second end, and a length defined between the first end and the second end. The second end is a free end. The method includes attaching a nano-sized structure along a portion of the length of the tip structure to extend a total length of the tip structure to include the length of the tip structure and a first length associated with the nano-sized structure. The method includes shortening the nano-sized structure from the first length to a second length. The method also includes pushing the nano-sized structure in a direction parallel to the second length to reduce the second length to a third length of the nano-sized structure along the direction parallel to the second length to cause the nano-sized structure to move along a portion of the length of the tip structure.
Abstract:
A solvent-resistant microfluidio device (MD) is fabricated from a functionalized, photo-curable perfluoropolyether (PFPE). In one embodiment, a polymeric precursor (PP), comprising PFPE, is disposed on a patterned surface (PS) of a substrate (S), having raised protrusions (P). Ultraviolet light (UV) is applied to yield a patterned layer (PL) of photo-cured PFPE having recesses (R) comprising at least one channel (CH). Patterned layer (PL) is removed from patterned surface (PS) of substrate (S) to yield microfluidic device (MD).
Abstract:
High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers (9102a, 9102b) of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers (9102a, 9102b), thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Abstract:
Valve structures (100) formed in elastomer material (108) are electrostatically actuated by applying voltage to a flexible, electrically conductive wire pattern. An actuation force generated between the patterned wire structure and an electrode (112) result in closure of a flow channel (102) formed in elastomer material (108) underlying the wire. In one embodiment of a valve structure (100) in accordance with the present invention, the wire structure is patterned by lithography and etching of a copper/polyimide laminate, with an underlying gold plate (114) positioned on the opposite side of the flow channel (102) serving as an electrode (112). In an alternative embodiment (400), application of an actuation force between the first (418) and second (428) patterned strips closes the control channel (422) and an associated flow channel (406) underlying the control channel (422).
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.