Abstract:
The present invention relates to a semiconductor device. The semiconductor device includes a fluorocarbon film formed on a substrate and a film containing metal formed on the fluorocarbon film, wherein the content amount of fluorine atom on the fluorocarbon film, which contacts the film containing metal, is in a predetermined range.
Abstract:
Disclosed is a method for dicing a semiconductor wafer. The method for dicing a semiconductor wafer prevents a die from being contaminated with silicon dust, generated during the dicing of the wafer, and thus prevents defects in a subsequent wire bonding step, such as defects in bonding wire, contamination of a semiconductor device, etc. The method for dicing a semiconductor wafer comprises the steps of: applying a fluorine-containing polymer coating agent onto one surface of a wafer having a circuit pattern formed thereon to form a polymer coating layer, before dicing the wafer.
Abstract:
Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a plasma source to provide an increased reactive species density. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation. In one example an electron beam array such as a carbon nanotube array is used to selectively expose a surface during a processing operation.
Abstract:
A method for producing a polymer for semiconductor optoelectronics, comprising the steps of providing a monomer is produced having the formula (I), wherein: R 1 is a hydrolysable group, R 2 is hydrogen, and R 3 is a bridging linear or branched bivalent hydrocarbyl group, said monomer being produced by hydrosilylation of the corresponding starting materials, and homo- or copolymerizing the monomer to produce a polymer.
Abstract:
The present invention relates to non-volatile ferroelectric memory devices (30) comprising a transistor (22) and a capacitor (23), and more particularly to non-volatile electrically erasable programmable ferroelectric memory elements, and a method for processing such non-volatile ferroelectric memory devices (30). The method according to the invention comprises a limited number of mask steps because a gate dielectric layer of the transistor (22) and a dielectric layer of the capacitor (23) are made from the same organic or inorganic ferroelectric layer (14).
Abstract:
A process is disclosed for forming a fluoropolymer layer on a thin film device, comprising contacting said thin film device with a gas phase fluoromonomer, and initiating polymerization of said fluoromonomer with a free radical polymerization initiator whereby said fluoromonomer polymerizes to form said fluoropolymer layer on said thin film device.
Abstract:
A method for preparing an organic electronic or optoelectronic device is described. The method comprises depositing a layer of fluorinated polymer (103) on a substrate (101, 102), patterning the layer of fluorinated polymer to form a relief pattern and depositing from solution a layer of organic semiconductive or conductive material on the substrate (105, 106). The fluorinated polymer may be a fluorinated photoresist and may be treated by exposure to ultraviolet light and ozone prior to the deposition of the layer of organic semiconductive or conductive material. The method has particular application in the preparation of organic light emitting devices by ink jet printing.