摘要:
An electrostatic chuck and gripping system are configured for clamping and processing workpieces having differing diameters. An ion implantation apparatus selectively provides ions to a first workpiece and a second workpiece in a process chamber, where a diameter of the first workpiece is greater the second workpiece. A chuck supports the respective first or second workpiece within the process chamber during exposure to the ions. A load lock chamber isolates a process environment from an external environment and has a workpiece support for the respective first or second workpiece during a transfer of the first or second workpiece between the process chamber and the external environment. A vacuum robot transfers the first or second workpiece between the chuck and workpiece support, and has a gripper mechanism configured to selectively grip the first or second workpiece between a plurality of stepped guides.
摘要:
A process chamber for processing a plurality of substrates is provided. The process chamber includes a chamber body having a single substrate transfer opening, a first substrate support mesa disposed in the chamber body, and a second substrate support mesa disposed in the chamber body. Each substrate support mesa is configured to support a substrate during processing. The centers of the first substrate support mesa, the second substrate support mesa, and the opening are linearly aligned.
摘要:
A chemical vapor deposition system is disclosed herein. The chemical vapor deposition system has a plurality of reaction chambers to operate independently in the growth of epitaxial layers on wafers within each of the reaction chambers for the purpose of reducing processing time while maintaining the quality necessary for the fabrication of high-performance semiconductor devices.
摘要:
Embodiments described herein generally relate to a method and apparatus for encapsulating an OLED structure, more particularly, to a TFE structure for an OLED structure. The TFE structure includes at least one dielectric layer and at least two barrier layers, and the TFE structure is formed over the OLED structure. The at least one dielectric layer is deposited by atomic layer deposition (ALD). Having the at least one dielectric layer formed by ALD in the TFE structure improves the barrier performance of the TFE structure.
摘要:
An apparatus having a drive unit having a first drive axis rotatable about a first axis of rotation and a second drive axis rotatable about a second axis of rotation, the second drive axis being coaxial with and partially within the first drive axis and axially rotatable within the first drive axis. A robot arm has an upper arm connected to the drive unit at the first drive axis, a forearm coupled to the upper arm, the forearm being coupled to the upper arm at a first rotary joint and rotatable about the first rotary joint, the first rotary joint being actuatable by a first band arrangement coupled to the second drive axis, and an end effector coupled to the forearm, the end effector being coupled to the forearm at a second rotary joint and rotatable about the second rotary joint, the second rotary joint being actuatable by a second band arrangement coupled to the first rotary joint. The second band arrangement is configured to provide a variable transmission ratio.
摘要:
The present invention relates to an apparatus and a method for transferring substrates into and from a vacuum chamber in a lithography apparatus (301). The load lock system comprises: a load lock chamber (310) provided with an opening (311) for allowing passage of a substrate (405) in and out of the load lock chamber, and a transfer apparatus comprising a sub-frame at least partially arranged in the load lock chamber, an arm which is, with a proximal end thereof, connected to the sub-frame, and a substrate receiving unit which is connected to a distal end of the arm. The arm comprises at least three hinging arm parts, wherein a first and a second arm part are hingedly connected to the sub-frame with a proximal end thereof. A third arm part is hingedly connected to the distal ends of the first and second arm parts. The arm parts are arranged to form a four-bar linkage.
摘要:
A buffer system for a semiconductor device fabrication tool includes one or more retractable shelves, one or more sliding assemblies positionable above the one or more load ports of the semiconductor device fabrication tool, and one or more lifting assemblies. The one or more retractable shelves are configured to support sealable containers. The one or more sliding assemblies are configured to receive the sealable containers and are further configured to transport the sealable containers to one or more positions beneath the one or more retractable shelves. The one or more lifting assemblies are configured to transport the sealable containers between any two of the group including one or more retractable shelves, the one or more sliding assemblies, and the one or more load ports.
摘要:
A system for processing a substrate is provided including a first planar motor, a substrate carrier, a first processing chamber, and a first lift. The first planar motor includes a first arrangement of coils disposed along a first horizontal direction, a top surface parallel to the first horizontal direction, a first side, a second side. The substrate carrier has a substrate supporting surface parallel to the first horizontal direction. The first processing chamber has an opening to receive a substrate disposed on the substrate carrier. The first lift includes a second planar motor having a second arrangement of coils disposed along the first horizontal direction. A top surface top surface of the second planar motor is parallel to the first horizontal direction. The first lift is configured to move the top surface of the second planar motor between a first vertical location and a second vertical location.
摘要:
A system for depositing one or more layers, particularly layers including organic materials therein, is described. The system includes a load lock chamber for loading a substrate to be processed, a transfer chamber for transporting the substrate, a vacuum swing module provided between the load lock chamber and the transfer chamber, at least one deposition apparatus for depositing material in a vacuum chamber of the at least one deposition chamber, wherein the at least one deposition apparatus is connected to the transfer chamber; a further load lock chamber for unloading the substrate that has been processed, a further transfer chamber for transporting the substrate, a further vacuum swing module provided between the further load lock chamber and the further transfer chamber, and a carrier return track from the further vacuum swing module to the vacuum swing module, wherein the carrier return track is configured to transport the carrier under vacuum conditions and/or under a controlled inert atmosphere.