Abstract:
A thermal management system for an electrical component includes a printed circuit board (PCB) capable of receiving the electrical component on a first side of the PCB. An elongate member has one end attached to a second side of the PCB, and another end disposed away from the PCB. The elongate member also has an open interior that facilitates fluid communication between the two ends. One of the ends defines an at least partially closed boundary on the PCB. The PCB includes an aperture disposed therethrough proximate the boundary such that fluid communication is facilitated between the first side of the PCB and the second side of the PCB, and along at least a portion of the elongate member.
Abstract:
A display apparatus (1) includes a display panel (10); a backlight (70) configured to provide light to the display panel (10); a heat sink (80) configured to absorb heat generated by the backlight (70); a bottom chassis (50) configured to support the backlight (70) and the heat sink (80); a first circuit board (91) mounted on the bottom chassis (50); a second circuit board (92) mounted on the bottom chassis (50); and a waveguide (100) formed between the first circuit board and the second circuit board for wireless communication between the first and second circuit boards (91, 92).
Abstract:
The invention relates to a wire-printed circuit board or card (1) comprising conductors (6) that run on and/or in the circuit board or card between connection points (4). The aim of the invention is to improve a circuit board of this type. To achieve this, at least one of the conductors (6) has a rectangular or square cross-section. In addition, at least some of the conductors have a hollow cross-section, in which a coolant or heating agent circulates.
Abstract:
A stress relaxation type electronic component which is to be mounted on a circuit board, wherein a stress relaxation mechanism member is disposed on a surface of said electronic component, said surface being on a side of a connection portion where said electronic component is to be connected to said circuit board, and said stress relaxation mechanism member is electrically conductive.
Abstract:
An assembly (1) is disclosed, comprising at least one electrical device (5) and at least one carrier substrate (2) arranged to support the at least one electrical device (5). The at least one carrier substrate (2) is arranged with at least one tubular structure (6), which is at least in part hollow and arranged so as to permit passage of fluid through the at least one carrier substrate (2), for example between a first side (3) of the carrier substrate (2) and a second side (4) of the carrier substrate (2), and wherein the at least one tubular structure (6) is arranged such that it has an extension so that it protrudes a predefined distance from at least one of the first side (3) and the second side (4). A lighting device comprising the assembly (1) and a method (30) for manufacturing the assembly (1) are also disclosed.
Abstract:
The invention relates to an electric supercharging compressor comprising: a rotary electric machine (200) intended to drive the compressor, a power supply device intended to power the rotary electric machine (200) and configured to be mounted on a housing (50) of the compressor, said power supply device comprising at least one electronic component (30), said electronic component (30) being mounted on one side of the power supply device so that the electronic component is positioned above the rotary electric machine (200).
Abstract:
Connecting a capacitive measuring probe at elevated temperatures is achieved by direct attachment of metallic connecting components on a temperature substrate. A method and apparatus for a high temperature cable to circuit board connection involves a set or plurality of connecting elements that are soldered directly on the circuit board and a set or plurality of mating connecting elements that are soldered to a secondary circuit board having soldering pads for a cable.
Abstract:
A surface mountable power supply and a method of manufacturing the power supply. In one embodiment, the power supply includes: (1) a substrate having opposing upper and lower conductive layers (2) a lower electrical component having a first lead mounted on a first pad on the lower conductive layer and subject to forces capable of detaching the lower electrical component from the substrate when the power supply passes through a reflow soldering process, (3) an upper electrical component having a second lead mounted on a second pad on the upper conductive layer, (4) a solder located proximate the first lead, the lower electrical component of a sufficiently low weight such that a surface tension of a liquid state of the solder is sufficient to maintain the lower electrical component in contact with the lower conductive layer as the power supply passes through the reflow soldering process, (5) a planar magnetic device mounted on the substrate, the planar magnetic device having windings formed from a portion of conductive traces on the upper and lower conductive layers and a core disposed through apertures of the substrate and proximate the windings and (6) an inter-substrate conductive mount, coupled to the lower conductive layer, composed of a material having a melting point above a solder reflow temperature and adapted to mount the power supply to an adjacent substrate and provide a conductive path therebetween, the conductive mount including first and second compliant solder joints at interfaces of the substrate and the adjacent substrate, respectively.
Abstract:
A connector (10) for microelectronic elements includes a sheetlike body (24) having a plurality of active contacts (22) arranged in a regular grid pattern. The active contacts (22) may include several metallic projections (28) extending inwardly around a hole (27) in the sheetlike element (24), on a first major surface (32). A support structure such as a grid array of noncollapsing structural posts (23) is on a second major surface (33), and each of the posts (23) is electrically connected to one of the active contacts (22). The grid array of the posts (23) and the grid array of active contacts (22) are offset from one another so that an active contact (22) is surrounded by several posts (23). The posts (23) support the sheetlike element (24) spaced away from a substrate (41) to which the posts (23) are attached. A microelectronic element (45) having bump leads (46) thereon may be engaged by contacting the bump leads (46) with the active contacts (22), and deflecting the sheetlike element (24) between the bump leads (46) on one side and the posts (23) on the other side.