Abstract:
A semiconductor device includes a substrate having a logic device region including logic devices thereon, and an input/output (I/O) device region including I/O devices thereon adjacent the logic device region. A first fin field-effect transistor (FinFET) on the logic device region includes a first semiconductor fin protruding from the substrate, and a triple-gate structure having a first gate dielectric layer and a first gate electrode thereon. A second FinFET on the I/O device region includes a second semiconductor fin protruding from the substrate, and a double-gate structure having a second gate dielectric layer and a second gate electrode thereon. The first and second gate dielectric layers have different thicknesses. Related devices and fabrication methods are also discussed.
Abstract:
A method of manufacturing a semiconductor device includes forming a gate insulation layer pattern on a substrate, forming a sacrificial layer including impurities on the gate insulation layer pattern, annealing the sacrificial layer so that the impurities in the sacrificial layer diffuse into the gate insulation layer pattern, removing the sacrificial layer, and forming a gate electrode on the gate insulation layer pattern.
Abstract:
Provided is a method of manufacturing a semiconductor device, in which the thickness of a gate insulating layer of a CMOS device can be controlled. The method can include selectively injecting fluorine (F) into a first region on a substrate and avoiding injecting the fluorine (F) into a second region on the substrate. A first gate insulating layer is formed of oxynitride layers on the first and second regions to have first and second thicknesses, respectively, where the first thickness is less than the second thickness. A second gate insulating layer is formed on the first gate insulating layer and a gate electrode pattern is formed on the second gate insulating layer.
Abstract:
Provided is a capacitor of a semiconductor device and a method of fabricating the same. In one embodiment, the capacitor includes a lower electrode formed on a semiconductor substrate; a dielectric layer formed on the lower electrode; and an upper electrode that is formed on the dielectric layer. The upper electrode includes a first conductive layer, a second conductive layer, and a third conductive layer stacked sequentially. The first conductive layer comprises a metal layer, a conductive metal oxide layer, a conductive metal nitride layer, or a conductive metal oxynitride layer. The second conductive layer comprises a doped polysilicon germanium layer. The third conductive layer comprises a material having a lower resistance than that of the second conductive layer.
Abstract:
Methods of forming an electronic device include providing a fist electrode, providing a dielectric oxide layer on the first electrode, and providing a second electrode on the dielectric oxide layer so that the dielectric oxide layer is between the first and second electrodes. More particularly, a first portion of the dielectric oxide layer adjacent the first electrode can have a first density of titanium, and a second portion of the dielectric oxide layer opposite the first electrode can have a second density of titanium different than the first density. Related structures are also discussed.
Abstract:
Provided is a capacitor of a semiconductor device and a method of fabricating the same. In one embodiment, the capacitor includes a lower electrode formed on a semiconductor substrate; a dielectric layer formed on the lower electrode; and an upper electrode that is formed on the dielectric layer. The upper electrode includes a first conductive layer, a second conductive layer, and a third conductive layer stacked sequentially. The first conductive layer comprises a metal layer, a conductive metal oxide layer, a conductive metal nitride layer, or a conductive metal oxynitride layer. The second conductive layer comprises a doped polysilicon germanium layer. The third conductive layer comprises a material having a lower resistance than that of the second conductive layer.
Abstract:
A conductive contact plug extends through an opening in the dielectric layer to contact the substrate and includes a widened pad portion extending onto the dielectric layer adjacent the opening. An ohmic pattern is disposed on the pad portion of the plug, and a barrier pattern is disposed on the ohmic pattern. A concave first capacitor electrode is disposed on the barrier pattern and defines a cavity opening away from the substrate. A capacitor dielectric layer conforms to a surface of the first capacitor electrode and a second capacitor electrode is disposed on the capacitor dielectric layer opposite the first capacitor electrode. Sidewalls of the ohmic pattern, the barrier pattern and the pad portion of the contact plug may be substantially coplanar, and the device may further include an etch stopper layer conforming to at least sidewalls of the ohmic pattern, the barrier pattern and the pad portion of the contact plug. Related fabrication methods are described.
Abstract:
A method according to example embodiments includes forming isolation regions in a substrate, the isolation regions defining active regions. Desired regions of the active regions and the isolation regions are removed, thereby forming recess channel trenches to a desired depth. The recess channel trenches are fog to have a first region in contact with the active regions and a second region in contact with the isolation regions. A width of a bottom surface of the recess channel trenches is less than that of a top surface thereof. The active regions and the isolation regions are annealed to uplift the bottom surface of the recess channel trenches. An area of the bottom surface of the first region is increased. A depth of the bottom surface of the first region is reduced.
Abstract:
In a method of manufacturing a dielectric structure, after a first dielectric layer is formed on a substrate by using a metal oxide doped with silicon, the substrate is placed on a susceptor of a chamber. By treating the first dielectric layer with a plasma in controlling a voltage difference between the susceptor and a ground, a second dielectric layer is formed on the first dielectric layer. The second dielectric layer including a metal oxynitride doped with silicon having enough content of nitrogen is formed on the first dielectric layer. Therefore, dielectric properties of the dielectric structure comprising the first and the second dielectric layers can be improved and a leakage current can be greatly decreased. By adapting the dielectric structure to a gate insulation layer and/or to a dielectric layer of a capacitor or of a non-volatile semiconductor memory device, capacitances and electrical properties can be improved.
Abstract:
A method of forming a high dielectric film using atomic layer deposition (ALD), and a method of manufacturing a capacitor having the high dielectric film, include supplying a precursor containing a metal element to a semiconductor substrate and purging a reactor; supplying an oxidizer and purging the reactor; and supplying a reaction source containing nitrogen and purging the reactor.