摘要:
Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device having a channel area including a channel III-V material, and a source area including a first portion and a second portion of the source area. The first portion of the source area includes a first III-V material, and the second portion of the source area includes a second III-V material. The channel III-V material, the first III-V material and the second III-V material may have a same lattice constant. Moreover, the first III-V material has a first bandgap, and the second III-V material has a second bandgap, the channel III-V material has a channel III-V material bandgap, where the channel material bandgap, the second bandgap, and the first bandgap form a monotonic sequence of bandgaps. Other embodiments may be described and/or claimed.
摘要:
A non-planar transistor including partially melted raised semiconductor source/drains disposed on opposite ends of a semiconductor fin with the gate stack disposed there between. The raised semiconductor source/drains comprise a super-activated dopant region above a melt depth and an activated dopant region below the melt depth. The super-activated dopant region has a higher activated dopant concentration than the activated dopant region and/or has an activated dopant concentration that is constant throughout the melt region. A fin is formed on a substrate and a semiconductor material or a semiconductor material stack is deposited on regions of the fin disposed on opposite sides of a channel region to form raised source/drains. A pulsed laser anneal is performed to melt only a portion of the deposited semiconductor material above a melt depth.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Temperature measurement using a pyrometer in a processing chamber is described. The extraneous light received by the pyrometer is reduced. In one example, a photodetector is used to measure the intensity of light within the processing chamber at a defined wavelength. A temperature circuit is used to convert the measured light intensity to a temperature signal, and a doped optical window between a heat source and a workpiece inside processing chamber is used to absorb light at the defined wavelength directed at the workpiece from the heat source.
摘要:
Laser anneal to melt regions of a microelectronic device buried under overlying materials, such as an interlayer dielectric (ILD). Melting temperature differentiation is employed to selectively melt a buried region. In embodiments a buried region is at least one of a gate electrode and a source/drain region. Laser anneal may be performed after contact formation with contact metal coupling energy into the buried layer for the anneal.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
A non-planar transistor including partially melted raised semiconductor source/drains disposed on opposite ends of a semiconductor fin with the gate stack disposed there between. The raised semiconductor source/drains comprise a super-activated dopant region above a melt depth and an activated dopant region below the melt depth. The super-activated dopant region has a higher activated dopant concentration than the activated dopant region and/or has an activated dopant concentration that is constant throughout the melt region. A fin is formed on a substrate and a semiconductor material or a semiconductor material stack is deposited on regions of the fin disposed on opposite sides of a channel region to form raised source/drains. A pulsed laser anneal is performed to melt only a portion of the deposited semiconductor material above a melt depth.
摘要:
Laser anneal to melt regions of a microelectronic device buried under overlying materials, such as an interlayer dielectric (ILD). Melting temperature differentiation is employed to selectively melt a buried region. In embodiments a buried region is at least one of a gate electrode and a source/drain region. Laser anneal may be performed after contact formation with contact metal coupling energy into the buried layer for the anneal.
摘要:
Temperature measurement using a pyrometer in a processing chamber is described. The extraneous light received by the pyrometer is reduced. In one example, a photodetector is used to measure the intensity of light within the processing chamber at a defined wavelength. A temperature circuit is used to convert the measured light intensity to a temperature signal, and a doped optical window between a heat source and a workpiece inside processing chamber is used to absorb light at the defined wavelength directed at the workpiece from the heat source.