摘要:
A method of selectively forming a spacer on a first class of transistors and devices formed by such methods. The method can include depositing a conformal first deposition layer on a substrate with different classes of transistors situated thereon, depositing a blocking layer to at least one class of transistors, dry etching the first deposition layer, removing the blocking layer, depositing a conformal second deposition layer on the substrate, dry etching the second deposition layer and wet etching the remaining first deposition layer. Devices may include transistors of a first class with larger spacers compared to spacers of transistors of a second class.
摘要:
A gate structure may be utilized as a mask to form source and drain regions. Then the gate structure may be removed to form a gap and spacers may be formed in the gap to define a trench. In the process of forming a trench into the substrate, a portion of the source drain region is removed. Then the substrate is filled back up with an epitaxial material and a new gate structure is formed thereover. As a result, more abrupt source drain junctions may be achieved.
摘要:
Methods, techniques, and structures relating to die packaging. In one exemplary implementation, a die package interconnect structure includes a semiconductor substrate and a first conducting layer in contact with the semiconductor substrate. The first conducting layer may include a base layer metal. The base layer metal may include Cu. The exemplary implementation may also include a diffusion barrier in contact with the first conducting layer and a wetting layer on top of the diffusion barrier. A bump layer may reside on top of the wetting layer, in which the bump layer may include Sn, and Sn may be electroplated. The diffusion barrier may be electroless and may be adapted to prevent Cu and Sn from diffusing through the diffusion barrier. Furthermore, the diffusion barrier may be further adapted to suppress a whisker-type formation in the bump layer.
摘要:
The present invention discloses a method including: providing a substrate; forming a buried oxide layer over the substrate; forming a thin silicon body layer over the buried oxide layer, the thin silicon body layer having a thickness of 3-40 nanometers; forming a pad oxide layer over the thin silicon body layer; forming a silicon nitride layer over the pad oxide layer; forming a photoresist over the silicon nitride layer; forming an opening in the photoresist; removing the silicon nitride layer in the opening; partially or completely removing the pad oxide layer in the opening; removing the photoresist over the silicon nitride layer; forming a field oxide layer from the thin silicon body layer in the opening; removing the silicon nitride layer over the pad oxide layer; and removing the pad oxide layer over the thin silicon body layer.The present invention also discloses a structure including: a substrate; a buried oxide layer located over the substrate; a thin silicon body layer located over the buried oxide layer, the thin silicon body layer including active areas separated by isolation regions, the isolation regions having a modified bird's beak length that is 30-60% of a thickness of the thin silicon body layer; and a fully-depleted device located in each of the active regions.
摘要:
Embodiments of methods in accordance with the present invention provide three-dimensional carbon nanotube (CNT) integrated circuits comprising layers of arrays of CNT's separated by dielectric layers with conductive traces formed within the dielectric layers to electrically interconnect individual CNT's. The methods to fabricate three-dimensional carbon nanotube FET integrated circuits include the selective deposition of carbon nanotubes onto catalysts selectively formed on a conductive layer at the bottom of openings in a dielectric layer. The openings in the dielectric layer are formed using suitable techniques, such as, but not limited to, dielectric etching, and the formation of ring gate electrodes, including spacers, that provide openings for depositing self-aligned carbon nanotube semiconductor channels.
摘要:
Embodiments of methods in accordance with the present invention provide three-dimensional carbon nanotube (CNT) integrated circuits comprising layers of arrays of CNT's separated by dielectric layers with conductive traces formed within the dielectric layers to electrically interconnect individual CNT's. The methods to fabricate three-dimensional carbon nanotube FET integrated circuits include the selective deposition of carbon nanotubes onto catalysts selectively formed on a conductive layer at the bottom of openings in a dielectric layer. The openings in the dielectric layer are formed using suitable techniques, such as, but not limited to, dielectric etching, and the formation of ring gate electrodes, including spacers, that provide openings for depositing self-aligned carbon nanotube semiconductor channels.
摘要:
Methods of fabricating a first contact to a semiconductor device, which fundamentally comprises providing a semiconductor device formed on a substrate. The substrate further includes a conductive surface. A dielectric layer is formed over the substrate and has an opening exposing the conductive surface. The opening extends an entire length of the semiconductor device, partway down the entire length of the device, extending from the device onto adjacent field of the device, or and a combination thereof. A barrier layer is formed within the opening. A copper containing material fills the opening to form a first contact to the semiconductor device.
摘要:
Methods, techniques, and structures relating to die packaging. In one exemplary implementation, a die package interconnect structure includes a semiconductor substrate and a first conducting layer in contact with the semiconductor substrate. The first conducting layer may include a base layer metal. The base layer metal may include Cu. The exemplary implementation may also include a diffusion barrier in contact with the first conducting layer and a wetting layer on top of the diffusion barrier. A bump layer may reside on top of the wetting layer, in which the bump layer may include Sn, and Sn may be electroplated. The diffusion barrier may be electroless and may be adapted to prevent Cu and Sn from diffusing through the diffusion barrier. Furthermore, the diffusion barrier may be further adapted to suppress a whisker-type formation in the bump layer.
摘要:
A semiconductor device and method for its fabrication are described. An active region spacer may be formed on a top surface of an isolation region and adjacent to a sidewall of an active region. In one embodiment, the active region spacer may suppress the formation of metal pipes in the active region.
摘要:
In one embodiment of the invention, an integrated circuit package includes an integrated circuit, a package substrate, a first bump, a second bump and a shunt to provide for current distribution and reliability redundancy. The first and second bumps provide a first and second electric current pathway between the integrated circuit and package substrate. The shunt provides a third electric current pathway between the first bump and the second bump.