Abstract:
A semiconductor package includes a first structure, a first semiconductor chip on the first structure, a first conductive pad on the first structure between the first structure and the first semiconductor chip, a second conductive pad on a lower surface of the first semiconductor chip and vertically overlapping the first conductive pad, a bump connecting the first conductive pad and the second conductive pad, a first adhesive layer surrounding at least a part of side walls of the bump and side walls of the first conductive pad, and a second adhesive layer surrounding at least a part of the side walls of the bump and side walls of the second conductive pad, the second adhesive layer including a material different from the first adhesive layer, wherein a horizontal width of the first adhesive layer is smaller than a horizontal width of the second adhesive layer.
Abstract:
Methods and systems for low-force, low-temperature thermocompression bonding. The present application teaches new methods and structures for three-dimensional integrated circuits, in which cold thermocompression bonding is used to provide reliable bonding. To achieve this, reduction and passivation steps are preferably both used to reduce native oxide on the contact metals and to prevent reformation of native oxide, preferably using atmospheric plasma treatments. Preferably the physical compression height of the elements is set to be only enough to reliably achieve at least some compression of each bonding element pair, compensating for any lack of flatness. Preferably the thermocompression bonding is performed well below the melting point. This not only avoids the deformation of lower levels which is induced by reflow techniques, but also provides a steep relation of force versus z-axis travel, so that a drastically-increasing resistance to compression helps to regulate the degree of thermocompression.
Abstract:
A semiconductor package includes a plurality of semiconductor chips on a substrate. The semiconductor chips include a first semiconductor chip, a second semiconductor chip, and a third semiconductor chip that are sequentially stacked on the substrate. The semiconductor package further includes a plurality of non-conductive layers between the substrate and the first semiconductor chip and between adjacent semiconductor chips among the semiconductor chips. The semiconductor chips include smaller widths as a distance from the substrate increases. Each of the non-conductive layers includes an extension protruding outward from a side surface of an overlying one of the semiconductor chips.
Abstract:
Embodiments include but are not limited to apparatuses and systems including microelectronic devices including a package substrate, a plurality of electronic components disposed on and electrically coupled with the package substrate at one or more sides of the package substrate, one or more hollow cavity sheet molds surrounding the plurality of electronic components and coupled with one or more sides of the package substrate, and a plurality of through-mold vias to couple the package substrate with an external surface of at least one of the one or more hollow cavity sheet molds. The microelectronic device may be a chip-scale package or module. Methods and systems for making the same also are described.
Abstract:
A method and system for electrically connect a semiconductor device with a flip-chip form factor to a printed circuit board. An exemplary embodiment of the method comprises: aligning solder contacts on the device with a first copper contact and a second copper contact of the external circuitry, and, applying a supply current only directly to a buried layer of the first copper and not directly to the layer which is nearest the device, such that no current is sourced to the device through the layer nearest the device.
Abstract:
A device includes a chip attached to a substrate. The chip includes a conductive pillar having a length (L) measured along a long axis of the conductive pillar and a width (W) measured along a short axis of the conductive pillar. The substrate includes a conductive trace and a mask layer overlying the conductive trace, wherein the mask layer has an opening exposing a portion of the conductive trace. An interconnection is formed between the conductive pillar and the exposed portion of the conductive trace. The opening has a first dimension (d1) measured along the long axis of the conductive pillar and a second dimension (d2) measured along the short axis of the conductive pillar. A ratio of L to d1 is greater than a ratio of W to d2.
Abstract:
Standard solder-based interconnect structures are utilized as mechanical fasteners to attach an IC die in a “flip-chip” orientation to a support structure (e.g., a package base substrate or printed circuit board). Electrical connections between the support structure and the IC die are achieved by curved micro-springs that are disposed in peripheral regions of the IC die and extend through a gap region separating the upper structure surface and the processed surface of the IC die. The micro-springs are fixedly attached to one of the support structure and the IC die, and have a free (tip) end that contacts an associated contact pad disposed on the other structure/IC die. Conventional solder-based connection structures (e.g., solder-bumps/balls) are disposed on “dummy” (non-functional) pads disposed in a central region of the IC die. After placing the IC die on the support structure, a standard solder reflow process is performed to complete the mechanical connection.
Abstract:
A chip arrangement may include: a chip including a plurality of electrical nets, wherein each electrical net includes at least one bonding pad; and a plurality of pillars formed on the at least one bonding pad of a majority of the plurality of electrical nets, wherein the plurality of pillars may be configured to connect the at least one bonding pad of the majority of the plurality of electrical nets to a chip-external connection region.
Abstract:
A solder ball contact and a method of making a solder ball contact includes: a first insulating layer with a via formed on an integrated circuit (IC) chip and a metal pad; an under bump metallurgy (UBM) structure disposed within the via and on a portion of the first insulating layer, surrounding the via; a second insulating layer formed on an upper surface of an outer portion of the UBM structure that is centered on the via; and a solder ball that fills the via and is disposed above an upper surface of an inner portion of the UBM structure that contacts the via, in which the UBM structure that underlies the solder ball is of a greater diameter than the solder ball.
Abstract:
Provided are electrical connection structures and methods of fabricating the same. The structures may include a substrate including a bonding pad region provided with a bonding pad and a fuse region provided with a fuse, an insulating layer provided on the substrate and including a bonding pad opening exposing the bonding pad and a fuse opening exposing the fuse region, a connection terminal provided in the bonding pad region and electrically connected to the bonding pad, and a protection layer provided on the insulating layer including a first protection layer provided within the bonding pad region and a second protection layer in the fuse opening.