Abstract:
A manufacturing method of an embedded component package structure includes the following steps: providing a carrier and forming a semi-cured first dielectric layer on the carrier, the semi-cured first dielectric layer having a first surface; providing a component on the semi-cured first dielectric layer, and respectively providing heat energies from a top and a bottom of the component to cure the semi-cured first dielectric layer; forming a second dielectric layer on the first dielectric layer to cover the component; and forming a patterned circuit layer on the second dielectric layer, the patterned circuit layer being electrically connected to the component.
Abstract:
An electronic device package and a method for manufacturing the same are provided. The electronic device package includes a circuit layer and an electronic component. The circuit layer includes a dielectric layer having an opening, and an electrical contact. A width of an aperture of the opening increases from a first surface toward a second surface. The electrical contact is at least partially disposed in the opening and exposed through the opening. The electronic component is disposed on the second surface and electrically connected to the circuit layer.
Abstract:
The present disclosure provides a substrate structure. The substrate structure includes an interconnection structure, a dielectric layer on the interconnection structure, an electronic component embedded in the dielectric layer, and a first conductive via penetrating through the dielectric layer and disposed adjacent to the electronic component. The interconnection structure includes a carrier having a first surface and a second surface opposite to the first surface, a first conductive layer disposed on the first surface of the carrier, and a second conductive layer disposed on the second surface of the carrier. The first conductive via and at least one of the first conductive layer and the second conductive layer define a first shielding structure surrounding the electronic component. A method of manufacturing a substrate structure is also disclosed.
Abstract:
An embedded component package structure including a circuit substrate, an embedded component and a stress compensation layer is provided. The circuit substrate includes a core layer and an asymmetric circuit structure, and the core layer has a first thickness. The embedded component is disposed in the core layer. The stress compensation layer is disposed on one side of the core layer, and the stress compensation layer has a second thickness between 4 μm and 351 μm.
Abstract:
The present disclosure provides a substrate structure. The substrate structure includes an interconnection structure, a dielectric layer on the interconnection structure, an electronic component embedded in the dielectric layer, and a first conductive via penetrating through the dielectric layer and disposed adjacent to the electronic component. The interconnection structure includes a carrier having a first surface and a second surface opposite to the first surface, a first conductive layer disposed on the first surface of the carrier, and a second conductive layer disposed on the second surface of the carrier. The first conductive via and at least one of the first conductive layer and the second conductive layer define a first shielding structure surrounding the electronic component. A method of manufacturing a substrate structure is also disclosed.
Abstract:
A substrate structure is disclosed. The substrate structure includes a carrier, a dielectric layer on the carrier, a patterned organic core layer in the dielectric layer, and a conductive via. The patterned organic core layer defines a passage extending in the dielectric layer towards the carrier. The conductive via extends through the passage towards the carrier without contacting the patterned organic core layer.
Abstract:
The present disclosure relates to bonding structures useful in semiconductor packages. In an embodiment, a semiconductor device includes a semiconductor element, two pillar structures, and an insulation layer. The semiconductor element has a surface and includes at least one bonding pad disposed adjacent to the surface. The two pillar structures are disposed on a single bonding pad. The insulation layer is disposed adjacent to the surface of the semiconductor element. The insulation layer defines an opening, the opening exposes a portion of the single bonding pad, and the two pillar structures are disposed in the opening.
Abstract:
A manufacturing method of an embedded component package structure includes the following steps: providing a carrier and forming a semi-cured first dielectric layer on the carrier, the semi-cured first dielectric layer having a first surface; providing a component on the semi-cured first dielectric layer, and respectively providing heat energies from a top and a bottom of the component to cure the semi-cured first dielectric layer; forming a second dielectric layer on the first dielectric layer to cover the component; and forming a patterned circuit layer on the second dielectric layer, the patterned circuit layer being electrically connected to the component.
Abstract:
The present disclosure relates to bonding structures useful in semiconductor packages. In an embodiment, a semiconductor device includes a semiconductor element and two pillar structures. The semiconductor element has a surface and includes at least one bonding pad disposed adjacent to the surface. The two pillar structures are disposed on the one bonding pad. The two pillar structures are symmetric and formed of a same material
Abstract:
The present disclosure relates to bump structures and a semiconductor device and semiconductor device package having the same. The semiconductor device includes a body, at least one conductive metal pad and at least one metal pillar. The body includes a first surface. The at least one conductive metal pad is disposed on the first surface. Each metal pillar is formed on a corresponding conductive metal pad. Each metal pillar has a concave side wall and a convex side wall opposite the first concave side wall, and the concave side wall and the convex side wall are orthogonal to the corresponding conductive metal pad.