Flip-chip light emitting diode
    1.
    发明申请
    Flip-chip light emitting diode 失效
    倒装芯片发光二极管

    公开(公告)号:US20050087884A1

    公开(公告)日:2005-04-28

    申请号:US10693126

    申请日:2003-10-24

    IPC分类号: H01L23/48 H01L33/38 H01L33/40

    摘要: A flip chip light emitting diode die (10, 10′, 10″) includes a light-transmissive substrate (12, 12′, 12″) and semiconductor layers (14, 14′, 14″) that are selectively patterned to define a device mesa (30, 30′, 30″). A reflective electrode (34, 34′, 34″) is disposed on the device mesa (30, 30′, 30″). The reflective electrode (34, 34′, 34″) includes a light-transmissive insulating grid (42, 42′, 60, 80) disposed over the device mesa (30, 30′, 30″), an ohmic material (44, 44′, 44″, 62) disposed at openings of the insulating grid (42, 42′, 60, 80) and making ohmic contact with the device mesa (30, 30′, 30″), and an electrically conductive reflective film (46, 46′, 46″) disposed over the insulating grid (42, 42′, 60, 80) and the ohmic material (44, 44′, 44″, 62). The electrically conductive reflective film (46, 46′, 46″) electrically communicates with the ohmic material (44, 44′, 44″, 62).

    摘要翻译: 倒装芯片发光二极管管芯(10,10',10“)包括透光衬底(12,12',12”)和半导体层(14,14',14“),其被选择性地图案化 以限定装置台面(30,30',30“)。 反射电极(34,34',34“)设置在器件台面(30,30',30”)上。 反射电极(34,34',34“)包括设置在器件台面(30,30',30”)上方的透光绝缘栅极(42,42',60,80),欧姆材料 44,44',44“,62)设置在绝缘栅极(42,42',60,80)的开口处并与器件台面(30,30',30”)形成欧姆接触, 设置在绝缘栅极(42,42',60,80)上的导电反射膜(46,46',46“)和欧姆材料(44,44',44”,62)。 导电反射膜(46,46',46“)与欧姆材料(44,44',44”,62)电连通。

    Optical system and method for detecting particles
    5.
    发明申请
    Optical system and method for detecting particles 审中-公开
    用于检测颗粒的光学系统和方法

    公开(公告)号:US20070097366A1

    公开(公告)日:2007-05-03

    申请号:US11262210

    申请日:2005-10-31

    IPC分类号: G01N21/00

    摘要: Embodiments of the invention include a particle detection system that includes a light emitting source, a non-collimating reflector, a collimating reflector, and a detector. Light from the light emitting source is directed by the non-collimating reflector to an area through which a particle stream may be transmitted. Fluorescent light from the light striking particles is redirected to the collimating reflector and then on to the detector. Other embodiments include a single pump used to pull a pair of fluid flows through the detection system. Other embodiments include a plurality of light emitting sources whose light is directed to a particle stream by a single reflector. Other embodiments include a method for detecting particles.

    摘要翻译: 本发明的实施例包括一种粒子检测系统,其包括发光源,非准直反射器,准直反射器和检测器。 来自发光源的光由非准直反射器引导到可以传播颗粒物流的区域。 来自光撞击颗粒的荧光被重定向到准直反射器,然后被引导到检测器上。 其他实施例包括用于拉动一对流体流过检测系统的单个泵。 其他实施例包括多个发光源,其光通过单个反射器被引导到颗粒流。 其他实施方案包括用于检测颗粒的方法。

    Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
    6.
    发明申请
    Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates 有权
    在单晶氮化镓衬底上制造的III族氮化物基谐振腔发光器件

    公开(公告)号:US20050087753A1

    公开(公告)日:2005-04-28

    申请号:US10693803

    申请日:2003-10-24

    摘要: In a method for producing a resonant cavity light emitting device, a seed gallium nitride crystal (14) and a source material (30) are arranged in a nitrogen-containing superheated fluid (44) disposed in a sealed container (10) disposed in a multiple-zone furnace (50). Gallium nitride material is grown on the seed gallium nitride crystal (14) to produce a single-crystal gallium nitride substrate (106, 106′). Said growing includes applying a temporally varying thermal gradient (100, 100′, 102, 102′) between the seed gallium nitride crystal (14) and the source material (30) to produce an increasing growth rate during at least a portion of the growing. A stack of group III-nitride layers (112) is deposited on the single-crystal gallium nitride substrate (106, 106′), including a first mirror sub-stack (116) and an active region (120) adapted for fabrication into one or more resonant cavity light emitting devices (108, 150, 160, 170, 180).

    摘要翻译: 在制造谐振腔发光器件的方法中,将氮化镓晶体(14)和源极材料(30)布置在设置在密封容器(10)中的含氮过热流体(44)中, 多区炉(50)。 在氮化镓晶体(14)上生长氮化镓材料以制造单晶氮化镓衬底(106,106')。 所述生长包括在种子氮化镓晶体(14)和源材料(30)之间施加时间上不同的热梯度(100,100',102,102'),以在至少一部分生长期间产生增加的生长速率 。 一组III族氮化物层(112)沉积在单晶氮化镓衬底(106,106')上,其包括第一反射镜子层(116)和适于制造成一体的有源区(120) 或更多的谐振腔发光器件(108,150,160,170,180)。