摘要:
A flip chip light emitting diode die (10, 10′, 10″) includes a light-transmissive substrate (12, 12′, 12″) and semiconductor layers (14, 14′, 14″) that are selectively patterned to define a device mesa (30, 30′, 30″). A reflective electrode (34, 34′, 34″) is disposed on the device mesa (30, 30′, 30″). The reflective electrode (34, 34′, 34″) includes a light-transmissive insulating grid (42, 42′, 60, 80) disposed over the device mesa (30, 30′, 30″), an ohmic material (44, 44′, 44″, 62) disposed at openings of the insulating grid (42, 42′, 60, 80) and making ohmic contact with the device mesa (30, 30′, 30″), and an electrically conductive reflective film (46, 46′, 46″) disposed over the insulating grid (42, 42′, 60, 80) and the ohmic material (44, 44′, 44″, 62). The electrically conductive reflective film (46, 46′, 46″) electrically communicates with the ohmic material (44, 44′, 44″, 62).
摘要:
The present invention is directed towards a source of ultraviolet energy, wherein the source is a UV-emitting LED's. In an embodiment of the invention, the UV-LED's are characterized by a base layer material including a substrate, a p-doped semiconductor material, a multiple quantum well, a n-doped semiconductor material, upon which base material a p-type metal resides and wherein the base structure has a mesa configuration, which mesa configuration may be rounded on a boundary surface, or which may be non-rounded, such as a mesa having an upper boundary surface that is flat. In other words, the p-type metal resides upon a mesa formed out of the base structure materials. In a more specific embodiment, the UV-LED structure includes n-type metallization layer, passivation layers, and bond pads positioned at appropriate locations of the device. In a more specific embodiment, the p-type metal layer is encapsulated in the encapsulating layer.
摘要:
A pressure sensor is provided. The pressure sensor includes a multi-layer laminate comprising a substrate and a semiconductor layer, wherein the substrate comprises single crystal or quasi-single crystal aluminum oxide, and a portion of the substrate that is spaced from a peripheral edge is wet etched to form an inwardly facing sidewall that defines a volume; and a substrate to which the multi-layer laminate is secured. The volume is an enclosed volume further defined by a substrate surface.
摘要:
An etchant including a halogenated salt, such as Cryolite (Na3AlF6) or potassium tetrafluoro borate (KBF4), is provided. The salt may be present in the etchant in an amount sufficient to etch a substrate and may have a melt temperature of greater than about 200 degrees Celsius. A method of wet etching may include contacting an etchant to at least one surface of a support layer of a multi-layer laminate, wherein the support layer may include aluminum oxide; or contacting an etchant to at least one surface of a support layer of a multi-layer laminate, wherein the etchant may include Cryolite (Na3AlF6), potassium tetrafluoro borate (KBF4), or both; and etching at least a portion of the support layer. The method may provide a laminate produced by growing a crystal onto an aluminum oxide support layer, and chemically removing at least a portion of the support layer by wet etch. An electronic device, optical device or combined device including the laminate is provided.
摘要:
Embodiments of the invention include a particle detection system that includes a light emitting source, a non-collimating reflector, a collimating reflector, and a detector. Light from the light emitting source is directed by the non-collimating reflector to an area through which a particle stream may be transmitted. Fluorescent light from the light striking particles is redirected to the collimating reflector and then on to the detector. Other embodiments include a single pump used to pull a pair of fluid flows through the detection system. Other embodiments include a plurality of light emitting sources whose light is directed to a particle stream by a single reflector. Other embodiments include a method for detecting particles.
摘要:
In a method for producing a resonant cavity light emitting device, a seed gallium nitride crystal (14) and a source material (30) are arranged in a nitrogen-containing superheated fluid (44) disposed in a sealed container (10) disposed in a multiple-zone furnace (50). Gallium nitride material is grown on the seed gallium nitride crystal (14) to produce a single-crystal gallium nitride substrate (106, 106′). Said growing includes applying a temporally varying thermal gradient (100, 100′, 102, 102′) between the seed gallium nitride crystal (14) and the source material (30) to produce an increasing growth rate during at least a portion of the growing. A stack of group III-nitride layers (112) is deposited on the single-crystal gallium nitride substrate (106, 106′), including a first mirror sub-stack (116) and an active region (120) adapted for fabrication into one or more resonant cavity light emitting devices (108, 150, 160, 170, 180).
摘要:
A method may produce a resonant cavity light emitting device. A seed gallium nitride crystal and a source material in a nitrogen-containing superheated fluid may provide a medium for mass transport of gallium nitride precursors therebetween. A seed crystal surface may be prepared by applying a first thermal profile between the seed gallium nitride crystal and the source material. Gallium nitride material may be grown on the prepared surface of the seed gallium nitride crystal by applying a second thermal profile between the seed gallium nitride crystal and the source material while the seed gallium nitride crystal and the source material are in the nitrogen-containing superheated fluid. A stack of group III-nitride layers may be deposited on the single-crystal gallium nitride substrate. The stack may include a first mirror sub-stack and an active region adaptable for fabrication into one or more resonant cavity light emitting devices.
摘要:
A method for increasing carrier concentration in a semiconductor includes providing a group III nitride semiconductor device, determining a wavelength that increases carrier concentration in the semiconductor device, and directing at least one infrared light source, at the determined wavelength, into a semiconductor device excitation band.
摘要:
A crystalline composition is provided that includes gallium and nitrogen. The crystalline composition may have an amount of oxygen present in a concentration of less than about 3×1018 per cubic centimeter, and may be free of two-dimensional planar boundary defects in a determined volume of the crystalline composition. The volume may have at least one dimension that is about 2.75 millimeters or greater, and the volume may have a one-dimensional linear defect dislocation density of less than about 10,000 per square centimeter.
摘要:
A GaN crystal having up to about 5 mole percent of at least one of aluminum, indium, and combinations thereof. The GaN crystal has at least one grain having a diameter greater than 2 mm, a dislocation density less than about 104 cm−2, and is substantially free of tilt boundaries.
摘要翻译:具有至多约5摩尔%的铝,铟及其组合中的至少一种的GaN晶体。 GaN晶体具有至少一个直径大于2mm的晶粒,位错密度小于约10 -4 cm -2,并且基本上没有倾斜边界。