Abstract:
A tone inversion method for integrated circuit (IC) fabrication includes providing a substrate with a layer of amorphous carbon over the substrate and a patterning layer over the amorphous carbon layer. The patterning layer is etched to define a first pattern of raised structures and a complementary recessed pattern that is filled with a layer of image reverse material. The first pattern of raised structures is then removed to define a second pattern of structures comprising the image reverse material. A selective etching step is used to transfer the second pattern into a dielectric layer disposed between the layer of amorphous carbon and the substrate.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to airgaps which isolate metal lines and methods of manufacture. The structure includes: a plurality of metal lines formed on an insulator layer; and a dielectric material completely filling a space having a first dimension between metal lines of the plurality of metal lines and providing a uniform airgap with a space having a second dimension between metal lines of the plurality of metal lines. The first dimension is larger than the second dimension.
Abstract:
Conductive contact structure of a circuit structures and methods of fabrication thereof are provided. The fabrication includes, for instance, providing at least one contact opening disposed over a semiconductor substrate; forming a carbon-rich contact liner material including a carbon-containing species and an elemental carbon disposed therein, the carbon-containing species and the elemental carbon together defining a set carbon content within the carbon-rich contact liner material; and depositing the carbon-rich contact liner material conformally within the at least one contact opening disposed over the semiconductor substrate.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a cap structure and methods of manufacture. The structure includes: a gate structure composed of conductive gate material; sidewall spacers on the gate structure, extending above the conductive gate material; and a capping material on the conductive gate material and extending over the sidewall spacers on the gate structure.
Abstract:
Methods of facilitating fabrication of circuit structures are provided which include, for instance: providing a structure with a film layer; modifying an etch property of the film layer by implanting at least one species of element or molecule into the upper portion of the film layer, the etch property of the film layer remaining unmodified beneath the upper portion; and subjecting the structure and film layer with the modified etch property to an etching process, the modified etch property of the film layer facilitating the etching process. Modifying the etch property of the upper portion of the film layer may include making the upper portion of the film layer preferentially susceptible or preferentially resistant to the etching process depending on the circuit fabrication approach being facilitated.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a cap structure and methods of manufacture. The structure includes: a gate structure composed of conductive gate material; sidewall spacers on the gate structure, extending above the conductive gate material; and a capping material on the conductive gate material and extending over the sidewall spacers on the gate structure.
Abstract:
Conductive contact structure of a circuit structures and methods of fabrication thereof are provided. The fabrication includes, for instance, providing at least one contact opening disposed over a semiconductor substrate; forming a carbon-rich contact liner material having a set carbon content conformally within the at least one contact opening disposed over the semiconductor substrate.
Abstract:
A low-K nitride film and a method of making are disclosed. Embodiments include forming a nitride film on a substrate by plasma enhanced chemical vapor deposition (PECVD) and periodically fluctuating a production of radicals during the PECVD based, at least in part, on plural cycles of a radiofrequency (RF) induced plasma.