Abstract:
Embodiments of the invention include an interconnect structure and methods of forming such structures. In an embodiment, the interconnect structure may include an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD. Certain embodiments include one or more first interconnect lines in the ILD and a first dielectric cap positioned above each of the first interconnect lines. For example a surface of the first dielectric cap may contact a top surface of the first hardmask layer. Embodiments may also include one or more second interconnect lines in the ILD arranged in an alternating pattern with the first inter-connect lines. In an embodiment, a second dielectric cap is formed over a top surface of each of the second interconnect lines. For example, a surface of the second dielectric cap contacts a top surface of the first hardmask layer.
Abstract:
Subtractive self-aligned via and plug patterning for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate. The first layer includes a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The interconnect structure further includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating. The metal lines of the first grating are spaced apart from the metal lines of the second grating.
Abstract:
Techniques are disclosed for insulating or electrically isolating select vias within a given interconnect layer, so a conductive routing can skip over those select isolated vias to reach other vias or interconnects in that same layer. Such a via blocking layer may be selectively implemented in any number of locations within a given interconnect as needed. Techniques for forming the via blocking layer are also provided, including a first methodology that uses a sacrificial passivation layer to facilitate selective deposition of insulator material that form the via blocking layer, a second methodology that uses spin-coating of wet-recessible polymeric formulations to facilitate selective deposition of insulator material that form the via blocking layer, and a third methodology that uses spin-coating of nanoparticle formulations to facilitate selective deposition of insulator material that form the via blocking layer. Harmful etching processes typically associated with conformal deposition processes is avoided.
Abstract:
Methods of selectively depositing high-K gate dielectric on a semiconductor structure are disclosed. The method includes providing a semiconductor structure disposed above a semiconductor substrate. The semiconductor structure is disposed beside an isolation sidewall. A sacrificial blocking layer is then selectively deposited on the isolation sidewall and not on the semiconductor structure. Thereafter, a high-K gate dielectric is deposited on the semiconductor structure, but not on the sacrificial blocking layer. Properties of the sacrificial blocking layer prevent deposition of oxide material on its surface. A thermal treatment is then performed to remove the sacrificial blocking layer, thereby forming a high-K gate dielectric only on the semiconductor structure.
Abstract:
Techniques are disclosed for insulating or electrically isolating select vias within a given interconnect layer, so a conductive routing can skip over those select isolated vias to reach other vias or interconnects in that same layer. Such a via blocking layer may be selectively implemented in any number of locations within a given interconnect as needed. Techniques for forming the via blocking layer are also provided, including a first methodology that uses a sacrificial passivation layer to facilitate selective deposition of insulator material that form the via blocking layer, a second methodology that uses spin-coating of wet-recessible polymeric formulations to facilitate selective deposition of insulator material that form the via blocking layer, and a third methodology that uses spin-coating of nanoparticle formulations to facilitate selective deposition of insulator material that form the via blocking layer. Harmful etching processes typically associated with conformal deposition processes is avoided.