Abstract:
Methods and apparatuses relating to hardware processors with multiple interconnected dies are described. In one embodiment, a hardware processor includes a plurality of physically separate dies, and an interconnect to electrically couple the plurality of physically separate dies together. In another embodiment, a method to create a hardware processor includes providing a plurality of physically separate dies, and electrically coupling the plurality of physically separate dies together with an interconnect.
Abstract:
Method and apparatus for per-agent control and quality of service of shared resources in a chip multiprocessor platform is described herein. One embodiment of a system includes: a plurality of core and non-core requestors of shared resources, the shared resources to be provided by one or more resource providers, each of the plurality of core and non-core requestors to be associated with a resource-monitoring tag and a resource-control tag; a mapping table to store the resource monitoring and control tags associated with each non-core requestor; and a tagging circuitry to receive a resource request sent from a non-core requestor to a resource provider, the tagging circuitry to responsively modify the resource request to include the resource-monitoring and resource-control tags associated with the non-core requestor in accordance to the mapping table and send the modified resource request to the resource provider.
Abstract:
A processor may include a memory controller to interface with a system memory having a near memory and a far memory. The processor may include logic circuitry to cause memory controller to determine whether a write request is generated remotely or locally, and when the write request is generated remotely to instruct the memory controller to perform a read of near memory before performing a write, when the write request is generated locally and a cache line targeted by the write request is in the inclusive state to instruct the memory controller to perform the write without performing a read of near memory, and when the write request is generated locally and the cache line targeted by the write request is in the non-inclusive state to instruct the memory controller to read near memory before performing the write.
Abstract:
In an embodiment, an apparatus comprises: a first component to perform coherent operations; and a coherent fabric logic coupled to the first component via a first component interface. The coherent fabric logic may be configured to perform full coherent fabric functionality for coherent communications between the first component and a second component coupled to the coherent fabric logic. The first component may include a packetization logic to communicate packets with the coherent fabric logic, but not include coherent interconnect interface logic to perform coherent fabric functionality. Other embodiments are described and claimed.
Abstract:
Methods and apparatus relating to multiple-queue multiple-resource entry sleep and wakeup for power savings and bandwidth conservation in a retry based pipeline are described. In one embodiment, a bit indicates whether a corresponding queue entry is asleep or awake with respect to arbitration for resources in a retry based pipeline. Furthermore, multiple entries from different queues may be grouped together and multiple resources may be grouped together. Other embodiments are also disclosed.
Abstract:
Systems, methods, and apparatuses for resource bandwidth monitoring and control are described. For example, in some embodiments, an apparatus comprising a requestor device to send a credit based request, a receiver device to receive and consume the credit based request, and a delay element in a return path between the requestor and receiver devices, the delay element to delay a credit based response from the receiver to the requestor are detailed.
Abstract:
Examples described herein relate to processor circuitry to issue a cache coherence message to a central processing unit (CPU) cluster by selection of a target cluster and issuance of the request to the target cluster, wherein the target cluster comprises the cluster or the target cluster is directly connected to the cluster. In some examples, the selected target cluster is associated with a minimum number of die boundary traversals. In some examples, the processor circuitry is to read an address range for the cluster to identify the target cluster using a single range check over memory regions including local and remote clusters. In some examples, issuance of the cache coherence message to a cluster is to cause the cache coherence message to traverse one or more die interconnections to reach the target cluster.
Abstract:
Methods and apparatuses relating to hardware processors with multiple interconnected dies are described. In one embodiment, a hardware processor includes a plurality of physically separate dies, and an interconnect to electrically couple the plurality of physically separate dies together. In another embodiment, a method to create a hardware processor includes providing a plurality of physically separate dies, and electrically coupling the plurality of physically separate dies together with an interconnect.
Abstract:
A memory controller receives a memory invalidation request that references a line of far memory in a two level system memory topology with far memory and near memory, identifies an address of the near memory corresponding to the line, and reads data at the address to determine whether a copy of the line is in the near memory. Data of the address is to be flushed to the far memory if the data includes a copy of another line of the far memory and the copy of the other line is dirty. A completion is sent for the memory invalidation request to indicate that a coherence agent is granted exclusive access to the line. With exclusive access, the line is to be modified to generate a modified version of the line and the address of the near memory is to be overwritten with the modified version of the line.
Abstract:
In one embodiment, a processor includes a caching home agent (CHA) coupled to a core and a cache memory and includes a cache controller having a cache pipeline and a home agent having a home agent pipeline. The CHA may: receive, in the home agent pipeline, information from an external agent responsive to a miss for data in the cache memory; issue a global ordering signal from the home agent pipeline to a requester of the data to inform the requester of receipt of the data; and report issuance of the global ordering signal to the cache pipeline, to prevent the cache pipeline from issuance of a global ordering signal to the requester. Other embodiments are described and claimed.