Abstract:
The present disclosure relates to an apparatus and a method for manufacturing a channel-coupled scaffold. The present disclosure provides a method for manufacturing a channel-coupled scaffold, which includes: (1) a step of compressing a first elastic substrate which includes a groove on the surface of the substrate to close the groove; (2) a step of loading a scaffold composition onto the closed groove; and (3) a step of restoring the elastic substrate. The present disclosure also provides an apparatus for manufacturing a channel-coupled scaffold, which includes: a first elastic substrate which includes a groove on the surface of the substrate and onto which a scaffold composition is loaded: and a compression module which compresses the width of the groove of the elastic substrate to close it. The apparatus or method may accumulate a microchannel controlling local mass transfer, and align a collagen fiber in the scaffold at the same time.
Abstract:
The present invention investigate the two modes of glutamate release and the releasing rate of glutamate, and thus can provide a useful technique for neuron protection and acceleration of neurotransmission by controlling the glutamate release in astroctye. Thus, the present invention provides an inhibitor of the fast-mode release and/or the slow-mode release of astrocytic glutamate, a screening method of the inhibitor and a pharmaceutical composition or method of ameliorating, preventing and/or treating the disease associated with the over-release of glutamate via the Ca2+-activated anion channel, with the inhibition of fast-mode glutamate release.
Abstract:
The present disclosure relates to stretching apparatus and method for aligning microfibrils. Specifically, the present disclosure provides an apparatus for aligning microfibrils along a single direction, which includes: a first elastic substrate onto which a composition containing microfibrils is loaded; and a stretching module which stretches the width of the elastic substrate. In accordance with the apparatus the present disclosure, microfibrils or cells may be aligned along a particular direction simply by pulling and then releasing the elastic substrate. The present disclosure is also useful for culturing of the aligned cells because the physiological activity of the cells can be maintained and cytotoxicity can be prevented.
Abstract:
A pharmaceutical composition for preventing or treating a degenerative brain disease, and a method of screening a material for preventing or treating a degenerative brain disease. The method may effectively screen a prophylactic or therapeutic candidate material for preventing or treating a degenerative brain disease. A variety of degenerative brain diseases may be effectively prevented or treated using the pharmaceutical composition including a screened material for preventing or treating a degenerative brain disease.
Abstract:
The present invention relates to a novel phenoxypropanol derivative, represented by the structure of Chemical Formula I, and a racemate thereof, a pharmaceutically acceptable salt thereof, a solvate thereof and a hydrate thereof, wherein * represents an (R)-form or an (S)-form, X is selected from the group consisting of hydrogen, halogen and substituted or unsubstituted straight or branched alkyl having 1 to 4 carbon atoms, and n represents the number of X and an integer of 1 to 5, wherein at least a hydrogen is substituted with halogen in the substituted linear or branched alkyl having 1 to 4 carbon atoms. The derivative can be used for blocking T-type calcium channel and/or TREK channel, and for preventing and/or treating T-type calcium channel- and/or TREK channel-associated diseases.
Abstract:
The present invention relates to a novel phenoxypropanol derivative, use thereof for blocking T-type calcium channel and/or TREK channel, and use thereof for preventing and/or treating T-type calcium channel- and/or TREK channel-associated diseases.