Abstract:
A system for mapping road segment free spaces for use in autonomous vehicle navigation. The system includes at least one processor programmed to: receive from a first vehicle one or more location identifiers associated with a lateral region of free space adjacent to a road segment; update an autonomous vehicle road navigation model for the road segment to include a mapped representation of the lateral region of free space based on the received one or more location identifiers; and distribute the updated autonomous vehicle road navigation model to a plurality of autonomous vehicles.
Abstract:
Systems and methods of processing crowdsourced navigation information for use in autonomous vehicle navigation are disclosed. A method may include processing, by a mapping server, crowdsourced navigation information from a plurality of vehicles obtained by sensors coupled to the plurality of vehicles, wherein the navigation information describes road lanes of a road segment; collecting data about landmarks identified proximate to the road segment, the landmarking including a traffic sign; generating, by the mapping server, an autonomous vehicle map for the road segment, wherein the autonomous vehicle map includes a spline corresponding to a lane in the road segment and the landmarks identified proximate to the road segment; and distributing, by the mapping server, the autonomous vehicle map to an autonomous vehicle for use in autonomous navigation over the road segment.
Abstract:
Systems and methods are disclosed for providing maps to an autonomous vehicle. Methods include maintaining a road model that includes trajectories associated with a road segment, the trajectories used to assist the autonomous vehicle to navigate on a target trajectory consistent with the road model; determining, based on analysis of image data, an existence of a non-transient condition that is inconsistent with the road model, the image data from a camera integrated with the autonomous vehicle, wherein the autonomous vehicle is configured to deviate from the target trajectory based on the existence of the non-transient condition; and storing information about the non-transient condition for updating the road model.
Abstract:
A system is provided for determining a location of a landmark for use in navigation of an autonomous vehicle. The system includes a processor programmed to receive a measured position of the landmark. The processor is also programmed to determine a refined position of the landmark based on the measured position of the landmark and at least one previously acquired position for the landmark. The measured position and the previously acquired position are determined based on acquisition of an environmental image associated with the host vehicle, analysis of the environmental image to identify the landmark, reception of global positioning system (GPS) data representing a location of the host vehicle, analysis of the environmental image to determine a relative position of the identified landmark with respect to the host vehicle, and determination of a globally localized position of the landmark based on the GPS data and the relative position.
Abstract:
A system for autonomously navigating a vehicle along a road segment is disclosed. The system may have at least one processor. The processor may be programmed to receive from an image capture device at least one image representative of an environment of the vehicle. The processor may also be programmed to analyze the at least one image to identify at least one recognized landmark. Further, the processor may be programmed to determine a current location of the vehicle relative to a predetermined road model trajectory associated with the road segment based, at least in part, on a predetermined location of the recognized landmark. In addition, the processor may be programmed to determine an autonomous steering action for the vehicle based on a direction of the predetermined road model trajectory at the determined current location of the vehicle relative to the predetermined road model trajectory.
Abstract:
A system for autonomously navigating a host vehicle along a road segment. The system includes at least one processor programmed to: receive from an image capture device at least one image representative of an environment of a host vehicle; determine a longitudinal position of the host vehicle along a target trajectory; determine an expected lateral distance to at least one lane mark based on the determined longitudinal position and based on two or more location identifiers associated with the at least one lane mark; analyze the at least one image to identify the at least one lane mark; determine an actual lateral distance to the at least one lane mark based on analysis of the at least one image; and determine an autonomous steering action for the host vehicle based on a difference between the expected lateral distance and the actual lateral distance.
Abstract:
A non-transitory computer-readable medium is provided. The computer-readable medium includes a sparse map for autonomous vehicle navigation along a road segment. The sparse map includes a polynomial representation of a target trajectory for the autonomous vehicle along the road segment, and a plurality of predetermined landmarks associated with the road segment. The plurality of predetermined landmarks are spaced apart by at least 50 meters, and the sparse map has a data density of no more than 1 megabyte per kilometer.
Abstract:
A system for navigating an autonomous vehicle along a road segment is disclosed. The system may have at least one processor. The processor may be programmed to receive from an image capture device, images representative of an environment of the autonomous vehicle. The processor may also be programmed to determine a travelled trajectory along the road segment based on analysis of the images. Further, the processor may be programmed to determine a current location of the autonomous vehicle along a predetermined road model trajectory based on analysis of one or more of the plurality of images. The processor may also be programmed to determine a heading direction based on the determined traveled trajectory. In addition, the processor may be programmed to determine a steering direction, relative to the heading direction, by comparing the traveled trajectory to the predetermined road model trajectory at the current location of the autonomous vehicle.
Abstract:
A method of processing vehicle navigation information for use in autonomous vehicle navigation is provided. The method includes receiving, by a server, navigation information from a plurality of vehicles. The navigation information from the plurality of vehicles is associated with a common road segment. The method also includes storing, by the server, the navigation information associated with the common road segment. The method also includes generating, by the server, at least a portion of an autonomous vehicle road navigation model for the common road segment based on the navigation information from the plurality of vehicles. The method further includes distributing, by the server, the autonomous vehicle road navigation model to one or more autonomous vehicles for use in autonomously navigating the one or more autonomous vehicles along the common road segment.
Abstract:
Systems and methods are provided for anonymizing navigation data and generating an autonomous vehicle road navigation model with the anonymized data. A navigation system may receive data relating to a road section from a vehicle. The system may determine one or more motion representations associated with the vehicle and one or more road characteristics associated with the road section. The system may assemble navigation information relative to a first portion and relative to a second portion of the road section. The first and second portions may be spatially separated by a third portion. The system may transmit the navigation information relating to the first and second portions and forego transmitting information relating to the third portion. A server may receive the transmitted navigation information and assemble an autonomous vehicle road navigation model. The server may transmit the navigation model to one or more vehicles for use in autonomous navigation.