Abstract:
A system and method estimate a future path ahead of a current location of a vehicle. The system includes at least one processor programmed to: obtain an image of an environment ahead of a current arbitrary location of a vehicle navigating a road; obtain a trained system that was trained to estimate a future path on a first plurality of images of environments ahead of vehicles navigating roads; apply the trained system to the image of the environment ahead of the current arbitrary location of the vehicle; and provide, based on the application of the trained system to the image, an estimated future path of the vehicle ahead of the current arbitrary location.
Abstract:
Systems and methods are provided for autonomous vehicle navigation. The systems and methods may map a lane mark, may map a directional arrow, selectively harvest road information based on data quality, map road segment free spaces, map traffic lights and determine traffic light relevancy, and map traffic lights and associated traffic light cycle times.
Abstract:
Systems and methods are provided for autonomous vehicle navigation. The systems and methods may map a lane mark, may map a directional arrow, selectively harvest road information based on data quality, map road segment free spaces, map traffic lights and determine traffic light relevancy, and map traffic lights and associated traffic light cycle times.
Abstract:
A system for mapping road segment free spaces for use in autonomous vehicle navigation. The system includes at least one processor programmed to: receive from a first vehicle one or more location identifiers associated with a lateral region of free space adjacent to a road segment; update an autonomous vehicle road navigation model for the road segment to include a mapped representation of the lateral region of free space based on the received one or more location identifiers; and distribute the updated autonomous vehicle road navigation model to a plurality of autonomous vehicles.
Abstract:
Systems and methods use cameras to provide autonomous navigation features. In one implementation, a traffic light detection system is provided for a vehicle. One or more processing devices associated with the system receive at least one image of an area forward of the vehicle via a data interface, with the area including at least one traffic lamp fixture having at least one traffic light. The processing device(s) determine, based on at least one indicator of vehicle position, whether the vehicle is in a turn lane. Also, the processing device(s) process the received image(s) to determine the status of the traffic light, including whether the traffic light includes an arrow. Further, the system may cause a system response based on the determination of the status of the traffic light, whether the traffic light includes an arrow, and whether the vehicle is in a turn lane.
Abstract:
Systems and methods are provided for vehicle navigation. In one implementation, a system for navigating a vehicle may include at least one processor configured to receive a first image frame; detect in the first image frame a representation of a traffic light and determine a color state associated with lamps included on the traffic light. The at least one processor may receive an additional image frame includes a representation of the at least one traffic light; and determine, based on a comparison of the first image frame and the additional image frame, whether the at least one traffic light includes a blinking lamp. If the at least one traffic light includes a blinking lamp, the processor may cause the vehicle to implement a navigational action relative the traffic light in accordance with the determination and also based on a detected color state for the blinking lamp.
Abstract:
Systems and methods are disclosed for mapping lanes for use in vehicle navigation. In one implementation, at least one processing device may be programmed to receive navigational information from a first vehicle and a second vehicle that have navigated along a road segment including a lane split feature; receive at least one image associated with the road segment; determine, from the first navigational information, a first actual trajectory of the first vehicle and a second actual trajectory of the second vehicle; determine a divergence between the first actual trajectory and the second actual trajectory; determine, based on analysis of the at least one image, that the divergence between the first actual trajectory and the second actual trajectory is indicative of the lane split feature; and update a vehicle road navigation model to include a first target trajectory and a second target trajectory that branches from the first target trajectory after the lane split feature.
Abstract:
A system for mapping traffic lights and for determining traffic light relevancy for use in autonomous vehicle navigation. The system may include at least one processor programmed to: receive at least one location identifier associated with a traffic light; receive a state identifier associated with the traffic light; receive navigational information indicative of one or more aspects of motion of the first vehicle along the road segment, and determine, based on the navigational information, a lane of travel traversed by the first vehicle along the road segment. The processor may also determine whether the traffic light is relevant to the lane of travel traversed by the first vehicle; update an autonomous vehicle road navigation model relative to the road segment; and distribute the updated autonomous vehicle road navigation model to a plurality of autonomous vehicles.
Abstract:
A system and method estimate a future path ahead of a current location of a vehicle. The system includes at least one processor programmed to: obtain an image of an environment ahead of a current arbitrary location of a vehicle navigating a road; obtain a trained system that was trained to estimate a future path on a first plurality of images of environments ahead of vehicles navigating roads; apply the trained system to the image of the environment ahead of the current arbitrary location of the vehicle; and provide, based on the application of the trained system to the image, an estimated future path of the vehicle ahead of the current arbitrary location.