摘要:
Interconnection layouts are described that are particularly effective in the construction of a steam reformer/fuel cell combination for providing domestic heat and/or hot water as well as electricity. A distinguishing feature of the interconnections is that they permit the operator to optimize the efficiency of operation of the integrated system, and provide a higher efficiency at optimum operation compared to prior art designs. Combinations of reformer/fuel cell systems with conventional furnaces or boilers are also described.
摘要:
A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.
摘要:
A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.
摘要:
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
摘要:
A hydrocarbon fuel processing reactor for generating a hydrogen-enriched reformate from hydrocarbons is disclosed. A plurality of shells are arranged coaxially having a gap defined between each of the successive shells, thereby forming a plurality of coaxial zones. The shells are configured to permit heat transfer from one zone to another. Fluid streams for reactions within the reactor are preheated by heat transfer from adjacent zones.
摘要:
The efficiency of a combination reformer/fuel cell system is significantly improved by recapturing the energy value of heat generated in the fuel cell and producing additional power. The cooling water from the fuel cell is mixed, entirely or in part, with sufficient or excess compressed air, and at least partially evaporates in the compressed air. The air is at least sufficient to support the oxidative reactions in the fuel cell and also to serve as oxidant in a burner that provides heat to reform fuel/steam mixtures into hydrogen-containing reformate. This air/steam mixture, after leaving the fuel cell, is further heated by heat exchange with the reformate stream and reformate-producing modules, and with the exhaust stream of the burner. The steam/air mixture is injected into the burner, optionally after superheating in the burner exhaust, and is reacted with fuel in the burner. The burner exhaust may be used to provide heat to a fuel reforming reaction. The high-temperature burner exhaust may also be used to drive an expander, preferably a turbine, at a location in the system which is downstream of the burner, but in which the exhaust is at a high temperature so as to run the turbine efficiently. The turbine recovers heat energy from the fuel cell as mechanical energy, typically in excess of the energy required to run a compressor, because of the addition of steam to the compressed air. Moreover, system heat removal elements, such as radiators, as well as overall system size and cost, can be markedly reduced for a given level of output.
摘要:
A hydrogen fuel cell power system having improved efficiency comprises a fuel cell, a source of hydrogen gas, a compressor for creating a pressurized air stream, and a liquid supply which is heated by waste heat form the power system and evaporates into the pressurized air stream to produce a pressurized air and steam mixture. The pressurized air/steam mixture, which is preferably used as the oxidant in the fuel cell, is combusted with fuel in a burner to produce a high-temperature steam-laden exhaust stream. The high-temperature steam-laden exhaust stream drives an expander to produce a power output, and a power take-off from the expander uses the expander power to, for instance, drive an electrical generator, or drive other system components. The evaporation of liquid can take place external to the fuel cell, or can take place directly within the fuel cell, preferably using a cooling liquid that is directly injected into the fuel cell. The fuel cell power system advantageously uses the low-temperature waste heat of the fuel cell to evaporate liquid into the pressurized air, resulting in a steam/air mixture having a relatively large expansion potential.The systems and related methods of the invention are applicable to a wide range of fuel cell power systems, including a “pure” or “non-hybrid” fuel cell power system, powered by hydrogen from either an external source, such as a hydrogen storage tank, or from “direct” reforming of a fuel at the anode. The invention is also applicable to integrated or “hybridized” fuel cell power systems which contain a local fuel reformer. In these systems, the fuel cell is powered by hydrogen-containing reformate generated by the reformer.
摘要:
A reformer reactor 10 for producing a hydrogen-rich gas includes a first zone 18, a second zone 20, a third zone 22, a fourth zone 24 and a product gas collection space 40. The zones are sequentially adjacent. A flow path P1 is provided for directing flow of a reaction stream in diverging directions from the first zone 18 into the second zone 20, the flow of the reaction stream continuing in the same general diverging directions through the second zone 20 and into and through the third and fourth zones 22,24. Directing the flow in diverging directions permits flow into and through a zone over more than just a single cross-sectional geometry of the zone or a single cross-section of the flow path transverse to the direction of flows. This configuration can be used to require a lower pressure for flowing the reaction stream so as to reduce the parasitic requirements of the reactor. This configuration can also be used to increase throughput of the reactor.
摘要:
An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.
摘要:
A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.