Abstract:
In an embodiment, an adhesive stamp includes a plurality of variable-length stamp bodies arranged in an array, wherein each stamp body has an adhesive surface on a head portion of the stamp body, the adhesive surface configured to hold a semiconductor chip, wherein a first electrode is arranged in the head portion, wherein the first electrode is chargeable and whose polarity is changeable, wherein a second electrode is arranged in a foot portion of the stamp body, wherein the second electrode is chargeable and whose polarity is changeable, wherein a length of the stamp body is variable depending on charges applied to the first electrode and the second electrode, and wherein the adhesive stamp is configured to transfer semiconductor chips.
Abstract:
A device and a method for producing a device are disclosed. In an embodiment the device includes a first component; a second component; and a connecting element arranged between the first component and the second component, wherein the connecting element comprises at least a first phase and a second phase, wherein the first phase comprises a first metal having a first concentration, a second metal having a second concentration and a third metal having a third concentration, wherein the second phase comprises the first metal having a fourth concentration, the second metal and the third metal, wherein the first metal, the second metal and the third metal are different from one another and are suitable for reacting at a processing temperature of less than 200° C., and wherein the following applies: c11≥c25 and c11≥c13≥c12.
Abstract:
A semiconductor chip, an optoelectronic device including a semiconductor chip, and a method for producing a semiconductor chip are disclosed. In an embodiment the chip includes a semiconductor body with a first main surface and a second main surface arranged opposite to the first main surface, wherein the semiconductor body includes a p-doped sub-region, which forms part of the first main surface, and an n-doped sub-region, which forms part of the second main surface and a metallic contact element that extends from the first main surface to the second main surface and that is electrically isolated from one of the sub-regions.
Abstract:
A semiconductor chip, an optoelectronic device including a semiconductor chip, and a method for producing a semiconductor chip are disclosed. In an embodiment the chip includes a semiconductor body with a first main surface and a second main surface arranged opposite to the first main surface, wherein the semiconductor body includes a p-doped sub-region, which forms part of the first main surface, and an n-doped sub-region, which forms part of the second main surface and a metallic contact element that extends from the first main surface to the second main surface and that is electrically isolated from one of the sub-regions.
Abstract:
In an embodiment, an adhesive stamp includes a plurality of variable-length stamp bodies arranged in an array, wherein each stamp body has an adhesive surface on a head portion of the stamp body, the adhesive surface configured to hold a semiconductor chip, wherein a first electrode is arranged in the head portion, wherein the first electrode is chargeable and whose polarity is changeable, wherein a second electrode is arranged in a foot portion of the stamp body, wherein the second electrode is chargeable and whose polarity is changeable, wherein a length of the stamp body is variable depending on charges applied to the first electrode and the second electrode, and wherein the adhesive stamp is configured to transfer semiconductor chips.
Abstract:
A method of attaching a semiconductor chip on a lead frame includes A) providing a semiconductor chip, B) applying a solder metal layer sequence to the semiconductor chip, wherein the solder metal layer sequence includes a first metallic layer including indium or an indium-tin alloy, C) providing a lead frame, D) applying a metallization layer sequence to the lead frame, wherein the metallization layer sequence includes a fourth layer including indium and/or tin arranged above the lead frame and a third layer including gold arranged above the fourth layer, E) forming an intermetallic intermediate layer including gold and indium, gold and tin or gold, tin and indium, G) applying the semiconductor chip to the lead frame via the solder metal layer sequence and the intermetallic intermediate layer, and H) heating the arrangement produced in G) to attach the semiconductor chip to the lead frame.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer that generates radiation and at least one n-doped layer adjoining the active layer, the semiconductor layer sequence is based on AlInGaN or on InGaN, one or a plurality of central layers composed of AlGaN each having thicknesses of 25 nm to 200 nm are grown at a side of the n-doped layer facing away from a carrier substrate, a coalescence layer of doped or undoped GaN having a thickness of 300 nm to 1.2 μm is formed at a side of the central layer or one of the central layers facing away from the carrier substrate, a roughening extends from the coalescence layer as far as or into the n-doped layer, a radiation exit area of the semiconductor layer stack is formed partly by the coalescence layer, and the central layer is exposed in places.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer that generates radiation and at least one n-doped layer adjoining the active layer, the semiconductor layer sequence is based on AlInGaN or on InGaN, one or a plurality of central layers composed of AlGaN each having thicknesses of 25 nm to 200 nm are grown at a side of the n-doped layer facing away from a carrier substrate, a coalescence layer of doped or undoped GaN having a thickness of 300 nm to 1.2 μm is formed at a side of the central layer or one of the central layers facing away from the carrier substrate, a roughening extends from the coalescence layer as far as or into the n-doped layer, a radiation exit area of the semiconductor layer stack is formed partly by the coalescence layer, and the central layer is exposed in places.
Abstract:
A device and a method for producing a device are disclosed. In an embodiment the device includes a first component; a second component; and a connecting element arranged between the first component and the second component, wherein the connecting element comprises at least a first phase and a second phase, wherein the first phase comprises a first metal having a first concentration, a second metal having a second concentration and a third metal having a third concentration, wherein the second phase comprises the first metal having a fourth concentration, the second metal and the third metal, wherein the first metal, the second metal and the third metal are different from one another and are suitable for reacting at a processing temperature of less than 200° C., and wherein the following applies: c11≥c25 and c11 ≥c13≥c12.