摘要:
In a method of forming a shallow trench isolation (STI) region in a semiconductor device, a pad oxide layer and a pad nitride layer may be formed on a semiconductor substrate. The pad nitride layer and pad oxide layer may be patterned to form an isolation region with exposed portions on the pad nitride layer, pad oxide layer and semiconductor substrate. A radical oxide layer may be formed on the exposed portions, and a trench may be formed in the isolation region by etching the semiconductor substrate and radical oxide layer. The STI region may be formed by filling an insulating layer in the trench.
摘要:
A method of forming a dielectric layer having a reduced thickness according to embodiments of the invention includes forming a lower oxide layer on a substrate, and forming a nitride layer on the lower oxide layer. Then, a preliminary oxide layer is formed on the nitride layer. A radical oxidation process using oxygen radicals is performed on the preliminary oxide layer to form an upper oxide layer on the nitride layer. The dielectric layer includes an ONO composite layer consisting of the lower oxide layer, the nitride layer, and the upper oxide layer. Due to the decreased thickness of the dielectric layer, the dielectric layer has an improved capacitance and an increased coupling coefficient.
摘要:
In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
摘要:
In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
摘要:
A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
摘要:
In an embodiment, a method of forming a gate structure for a semiconductor device includes forming a preliminary gate structure on a semiconductor substrate. The preliminary gate structure includes a gate oxide pattern and a conductive pattern sequentially stacked on the substrate. Then, a re-oxidation process is performed to the substrate having the preliminary gate structure using an oxygen radical including at least one oxygen atom, so that an oxide layer is formed on a surface of the substrate and sidewalls of the preliminary gate structure to form the gate structure for a semiconductor device. The thickness of the gate oxide pattern is prevented from increasing, and the quality of the oxide layer is improved.
摘要:
Methods of fabricating a floating gate of a flash memory cell are provided in which a first polysilicon layer is formed between first and second isolation layers. An upper region of the first polysilicon layer is then oxidized. The oxidized upper region of the first polysilicon layer is subsequently removed. A second polysilicon layer is formed on the first polysilicon layer. The second polysilicon layer and the first polysilicon layer are patterned to form the floating gate.
摘要:
In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
摘要:
A method of forming a dielectric layer for a non-volatile memory cell is disclosed. According to the method, a dielectric layer is formed by successively forming a lower oxide layer, a nitride layer and an upper oxide layer on a semiconductor substrate. The lower and upper oxide layers are formed using a radical oxidation process. A method of forming a non-volatile memory cell having the dielectric layer is also disclosed.
摘要:
In an exemplary embodiment of the invention a method of forming a gate oxide layer of a semiconductor device uses deuterium gas. The method includes introducing a semiconductor substrate, and depositing an insulating layer on the semiconductor substrate by supplying an oxidation reaction gas and a deuterium gas to the semiconductor substrate. Thus, a high quality gate oxide layer can be formed and resistance to degradation from the hot carrier effect can be improved. Further, when the method is applied to a tunnel oxide layer process of a flash memory, problems such as an increasing dispersion of the threshold voltage can be mitigated.