Germanium phototransistor with floating body
    1.
    发明授权
    Germanium phototransistor with floating body 有权
    具有浮体的锗光电晶体管

    公开(公告)号:US07675056B2

    公开(公告)日:2010-03-09

    申请号:US11891574

    申请日:2007-08-10

    摘要: A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.

    摘要翻译: 提出了一种浮体锗(Ge)光电晶体管及其制造工艺。 该方法包括:提供硅(Si)衬底; 选择性地形成覆盖Si衬底的绝缘体层; 使用液相外延(LPE)工艺形成覆盖绝缘体层的外延Ge层; 在Ge层中形成沟道区; 形成覆盖所述沟道区的栅极电介质,栅电极和栅极间隔; 并且在Ge层中形成源/漏区。 LPE工艺包括用具有大于第一温度的熔化温度的材料包封Ge,并且使用低于第一温度的温度来熔化Ge。 LPE工艺包括:形成覆盖沉积Ge的介电层; 融化Ge; 并且响应于冷却Ge,将外延生长前沿从下面的Si衬底表面横向传播到Ge中。

    Gallium nitride-on-silicon interface
    2.
    发明申请
    Gallium nitride-on-silicon interface 审中-公开
    氮化镓在硅界面

    公开(公告)号:US20080280426A1

    公开(公告)日:2008-11-13

    申请号:US11801210

    申请日:2007-05-09

    IPC分类号: H01L29/739 H01L21/20

    摘要: A method is provided for forming a matching thermal expansion interface between silicon (Si) and gallium nitride (GaN) films. The method provides a (111) Si substrate and forms a first aluminum (Al)-containing film in compression overlying the Si substrate. Nano-column holes are formed in the first Al-containing film, which exposes regions of the underlying Si substrate. A layer of GaN layer is selectively grown from the exposed regions, covering the first Al-containing film. The GaN is grown using a lateral nanoheteroepitaxy overgrowth (LNEO) process. The above-mentioned processes are reiterated, forming a second Al-containing film in compression, forming nano-column holes in the second Al-containing film, and selectively growing a second GaN layer. Film materials such as Al2O3, Si1-xGex, InP, GaP, GaAs, AlN, AlGaN, or GaN, may be initially grown at a low temperature. By increasing the growth temperatures, a compressed layer of epitaxial GaN can be formed on a Si substrate.

    摘要翻译: 提供了一种在硅(Si)和氮化镓(GaN)膜之间形成匹配的热膨胀界面的方法。 该方法提供(111)Si衬底并且在压缩覆盖Si衬底上形成第一含铝(Al)的膜。 在第一含Al膜中形成纳米柱孔,其暴露下面的Si衬底的区域。 从暴露区域选择性地生长GaN层,覆盖第一含Al膜。 使用横向纳米外延生长(LNEO)工艺生长GaN。 重复上述过程,在压缩中形成第二含Al膜,在第二含Al膜中形成纳米柱孔,并选择性地生长第二GaN层。 可以最初在低温下生长诸如Al 2 O 3 3,Si 1-x Ge x,InP,GaP,GaAs,AlN,AlGaN或GaN的膜材料。 通过增加生长温度,可以在Si衬底上形成外延GaN的压缩层。

    Floating body germanium phototransistor having a photo absorption threshold bias region
    3.
    发明授权
    Floating body germanium phototransistor having a photo absorption threshold bias region 有权
    具有光吸收阈值偏置区域的浮体锗光电晶体管

    公开(公告)号:US07351995B2

    公开(公告)日:2008-04-01

    申请号:US11894938

    申请日:2007-08-22

    CPC分类号: H01L31/1136

    摘要: A floating body germanium (Ge) phototransistor with a photo absorption threshold bias region, and an associated fabrication process are presented. The method includes: providing a p-doped Silicon (Si) substrate; selectively forming an insulator layer overlying a first surface of the Si substrate; forming an epitaxial Ge layer overlying the insulator layer; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers; forming source/drain (S/D) regions in the Ge layer; and, forming a photo absorption threshold bias region in the Ge layer, adjacent the channel region. In one aspect, the second S/D region has a length, longer than the first S/D length. The photo absorption threshold bias region underlies the second S/D region. Alternately, the second S/D region is separated from the channel by an offset, and the photo absorption threshold bias region is the offset in the Ge layer, after a light p-doping.

    摘要翻译: 提出了具有光吸收阈值偏置区域的浮体锗(Ge)光电晶体管,以及相关的制造工艺。 该方法包括:提供p掺杂硅(Si)衬底; 选择性地形成覆盖在所述Si衬底的第一表面上的绝缘体层; 形成覆盖绝缘体层的外延Ge层; 在Ge层中形成沟道区; 形成栅极电介质,栅电极和栅极间隔物; 在Ge层中形成源极/漏极(S / D)区域; 并且在Ge层中形成邻近沟道区的光吸收阈值偏置区域。 在一个方面,第二S / D区域具有比第一S / D长度更长的长度。 光吸收阈值偏置区域位于第二S / D区域的下方。 或者,第二S / D区域与沟道分离偏移,光吸收阈值偏置区域是在光p掺杂之后的Ge层中的偏移。

    Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
    4.
    发明授权
    Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide 失效
    用MDD和选择性CVD硅化物制造深亚微米CMOS源/漏极的方法

    公开(公告)号:US06780700B2

    公开(公告)日:2004-08-24

    申请号:US10035503

    申请日:2001-10-25

    IPC分类号: H01L218238

    CPC分类号: H01L21/823814

    摘要: A method of forming a MOS or CMOS device on a silicon substrate, includes preparing a substrate to contain conductive regions having device active areas therein; forming a gate electrode on the active areas; depositing and forming a gate electrode sidewall insulator layer on each gate electrode; implanting ions of a first type to form a source region and a drain region in one active area and implanting ions of a second type to form a source region and a drain region in the other active area.

    摘要翻译: 一种在硅衬底上形成MOS器件或CMOS器件的方法,包括制备衬底以包含其中具有器件有源区的导电区; 在有源区上形成栅电极; 在每个栅电极上沉积和形成栅电极侧壁绝缘体层; 注入第一类型的离子以在一个有效区域中形成源极区域和漏极区域,并且注入第二类型的离子,以在另一个有源区域中形成源极区域和漏极区域。

    Method to form relaxed sige layer with high ge content
    5.
    发明授权
    Method to form relaxed sige layer with high ge content 有权
    形成具有高Ge含量的轻松精神层的方法

    公开(公告)号:US06746902B2

    公开(公告)日:2004-06-08

    申请号:US10062319

    申请日:2002-01-31

    IPC分类号: H01L2100

    摘要: A method of forming a SiGe layer having a relatively high Ge content includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the Ge content of the SiGe layer is equal to or greater than 22%, by molecular weight; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm−2 to 5·1016 cm−2, at an energy of between about 20 keV to 45 keV; thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes; and depositing a layer of tensile-strained silicon on the relaxed SiGe layer to a thickness of between about 5 nm to 30 nm.

    摘要翻译: 形成Ge含量较高的SiGe层的方法包括制备硅衬底; 将SiGe层沉积至约100nm至500nm的厚度,其中SiGe层的Ge含量通过分子量等于或大于22%; 以约20keV至45keV之间的能量以约1.10 16 cm -2至5.10 16 cm -2的剂量将H +离子注入SiGe层; 热处理基板和SiGe层,以在约650℃至950℃的温度的惰性气氛中放松SiGe层约30秒至30分钟; 以及在弛豫的SiGe层上沉积拉伸应变硅层至约5nm至30nm的厚度。

    Method of fabricating a nickel silicide on a substrate
    6.
    发明授权
    Method of fabricating a nickel silicide on a substrate 有权
    在衬底上制造硅化镍的方法

    公开(公告)号:US06720258B2

    公开(公告)日:2004-04-13

    申请号:US10319313

    申请日:2002-12-12

    IPC分类号: H01L2144

    CPC分类号: H01L21/28518 H01L29/456

    摘要: An integrated circuit device, and a method of manufacturing the same, comprises an epitaxial nickel silicide on (100) Si, or a stable nickel silicide on amorphous Si, fabricated with a cobalt interlayer. In one embodiment the method comprises depositing a cobalt (Co) interface layer between the Ni and Si layers prior to the silicidation reaction. The cobalt interlayer regulates the flux of the Ni atoms through the cobalt/nickel/silicon alloy layer formed from the reaction of the cobalt interlayer with the nickel and the silicon so that the Ni atoms reach the Si interface at a similar rate, i.e., without any orientation preference, so as to form a uniform layer of nickel silicide. The nickel silicide may be annealed to form a uniform crystalline nickel disilicide. Accordingly, a single crystal nickel silicide on (100) Si or on amorphous Si is achieved wherein the nickel silicide has improved stability and may be utilized in ultra-shallow junction devices.

    摘要翻译: 集成电路器件及其制造方法包括在(100)Si上的外延硅化镍,或者由钴中间层制造的在非晶Si上的稳定的硅化镍。 在一个实施方案中,该方法包括在硅化反应之前在Ni和Si层之间沉积钴(Co)界面层。 钴中间层通过由钴中间层与镍和硅的反应形成的钴/镍/硅合金层调节Ni原子的通量,使得Ni原子以相似的速率到达Si界面,即没有 任何取向偏好,从而形成均匀的硅化镍层。 可以将镍硅化物退火以形成均匀的结晶二硅化镍。 因此,实现了(100)Si或非晶Si上的单晶硅化镍,其中硅化镍具有改进的稳定性并可用于超浅结结器件中。

    Iridium conductive electrode/barrier structure and method for same
    7.
    发明授权
    Iridium conductive electrode/barrier structure and method for same 失效
    铱导电电极/屏障结构及方法相同

    公开(公告)号:US06682995B2

    公开(公告)日:2004-01-27

    申请号:US10317742

    申请日:2002-12-11

    IPC分类号: H01L213205

    摘要: A conductive barrier, useful as a ferroelectric capacitor electrode, having high temperature stability has been provided. This conductive barrier permits the use of iridium (Ir) metal in IC processes involving annealing. Separating silicon substrate from Ir film with an intervening, adjacent, tantalum (Ta) film has been found to very effective in suppressing diffusion between layers. The Ir prevents the interdiffusion of oxygen into the silicon during annealing. A Ta or TaN layer prevents the diffusion of Ir into the silicon. This Ir/TaN structure protects the silicon interface so that adhesion, conductance, hillock, and peeling problems are minimized. The use of Ti overlying the Ir/TaN structure also helps prevent hillock formation during annealing. A method of forming a multilayer Ir conductive structure and Ir ferroelectric electrode are also provided.

    摘要翻译: 已经提供了具有高温稳定性的导电阻挡层,其可用作铁电电容器电极。 该导电屏障允许在涉及退火的IC工艺中使用铱(Ir)金属。 已经发现,分离硅衬底与Ir膜与中间相邻的钽(Ta)膜非常有效地抑制层之间的扩散。 Ir防止退火过程中氧进入硅的相互扩散。 Ta或TaN层防止Ir扩散到硅中。 这种Ir / TaN结构保护了硅界面,从而使粘附,电导,小丘和剥离问题最小化。 使用覆盖Ir / TaN结构的Ti也有助于防止退火过程中的小丘形成。 还提供了形成多层Ir导电结构和Ir铁电电极的方法。

    Process integration of Si1-xGex CMOS with Si1-xGex relaxation after STI formation
    8.
    发明授权
    Process integration of Si1-xGex CMOS with Si1-xGex relaxation after STI formation 失效
    STI形成后Si1-xGex CMOS与Si1-xGex弛豫过程的整合

    公开(公告)号:US06583000B1

    公开(公告)日:2003-06-24

    申请号:US10072183

    申请日:2002-02-07

    IPC分类号: H01L218238

    摘要: A method of forming a CMOS device includes preparing a silicon substrate, including forming plural device regions on the substrate; epitaxially forming a strained SiGe layer on the substrate, wherein the SiGe layer has a germanium content of between about 20% and 40%; forming a silicon cap layer epitaxially on the SiGe layer; depositing a gate oxide layer; depositing a first polysilicon layer; implanting H+ ions to a depth below the SiGe layer; forming a trench by shallow trench isolation which extends into the substrate; annealing the structure at a temperature of between about 700° C. to 900° C. for between about five minutes to sixty minutes; depositing an oxide layer and a second polysilicon layer, thereby filling the trench; planarizing the structure to the top of the level of the portion of the second polysilicon layer which is located in the trench; and completing the CMOS device.

    摘要翻译: 形成CMOS器件的方法包括制备硅衬底,包括在衬底上形成多个器件区域; 在衬底上外延地形成应变SiGe层,其中SiGe层的锗含量在约20%和40%之间; 在SiGe层上外延地形成硅帽层; 沉积栅氧化层; 沉积第一多晶硅层; 将H +离子注入SiGe层以下的深度; 通过延伸到衬底中的浅沟槽隔离形成沟槽; 在约700℃至900℃的温度下退火结构约5分钟至60分钟; 沉积氧化物层和第二多晶硅层,从而填充沟槽; 将结构平面化到位于沟槽中的第二多晶硅层的部分的顶部的顶部; 并完成CMOS设备。

    Molecular hydrogen implantation method for forming a relaxed silicon germanium layer with high germanium content
    9.
    发明授权
    Molecular hydrogen implantation method for forming a relaxed silicon germanium layer with high germanium content 失效
    用于形成具有高锗含量的松弛硅锗层的分子氢注入方法

    公开(公告)号:US06562703B1

    公开(公告)日:2003-05-13

    申请号:US10099374

    申请日:2002-03-13

    IPC分类号: H01L21265

    摘要: A method is provided for forming a relaxed silicon germanium layer with a high germanium content on a silicon substrate. The method comprises: depositing a single-crystal silicon (Si) buffer layer overlying the silicon substrate; depositing a layer of single-crystal silicon germanium (Si1−xGex) overlying the Si buffer layer having a thickness of 1000 to 5000 Å; implanting the Si1−xGex layer with ionized molecular hydrogen (H2+) a projected range of approximately 100 to 300 Å into the underlying Si buffer layer; optionally, implanting the Si1−xGex layer with a species selected such as boron, He, or Si; annealing; and, in response to the annealing, converting the Si1−xGex layer to a relaxed Si1−xGex layer. Optionally, after annealing, an additional layer of single-crystal Si1−xGex having a thickness of greater than 1000 Å can be deposited overlying the relaxed layer of Si1−xGex.

    摘要翻译: 提供了一种在硅衬底上形成具有高锗含量的松弛硅锗层的方法。 该方法包括:沉积覆盖硅衬底的单晶硅(Si)缓冲层; 沉积覆盖厚度为1000至5000的Si缓冲层的单晶硅锗层(Si1-xGex); 将具有离子化分子氢(H 2 +)的Si 1-x Ge x层投射到下面的Si缓冲层中约100至300埃的投影范围; 任选地,将Si1-xGex层用诸如硼,氦或硅的物质进行注入; 退火; 并且响应于退火,将Si1-xGex层转化为弛豫的Si1-xGex层。 任选地,在退火之后,可以沉积厚度大于的附加层的单晶Si1-xGex覆盖在Si1-xGex的松弛层上。

    Composite iridium-metal-oxygen barrier structure with refractory metal companion barrier and method for same
    10.
    发明授权
    Composite iridium-metal-oxygen barrier structure with refractory metal companion barrier and method for same 有权
    复合铱金属 - 氧阻隔结构与难熔金属伴侣屏障及其方法相同

    公开(公告)号:US06190963B1

    公开(公告)日:2001-02-20

    申请号:US09316661

    申请日:1999-05-21

    IPC分类号: H01L218242

    摘要: An Ir—M—O composite film has been provided that is useful in forming an electrode of a ferroelectric capacitor, where M includes a variety of refractory metals. The Ir combination film is resistant to high temperature annealing in oxygen environments. When used with an underlying barrier layer made from the same variety of M transition metals, the resulting conductive barrier also suppresses to diffusion of Ir into any underlying Si substrates. As a result, Ir silicide products are not formed, which degrade the electrode interface characteristics. That is, the Ir combination film remains conductive, not peeling or forming hillocks, during high temperature annealing processes, even in oxygen. The Ir—M—O conductive electrode/barrier structures are useful in nonvolatile FeRAM devices, DRAMs, capacitors, pyroelectric infrared sensors, optical displays, optical switches, piezoelectric transducers, and surface acoustic wave devices. A method for forming an Ir—M—O composite film barrier layer and an Ir—M—O composite film ferroelectric electrode are also provided.

    摘要翻译: 已经提供了可用于形成铁电电容器的电极的Ir-M-O复合膜,其中M包括各种难熔金属。 Ir组合膜在氧气环境中耐高温退火。 当与由相同种类的M过渡金属制成的底层阻挡层一起使用时,所得到的导电屏障还抑制Ir扩散到任何下面的Si衬底中。 结果,不形成铱硅化物产物,这降低了电极界面的特性。 也就是说,即使在氧气中,Ir组合膜在高温退火过程中仍保持导电性,不会剥离或形成小丘。 Ir-M-O导电电极/屏障结构可用于非易失性FeRAM器件,DRAM,电容器,热释电红外传感器,光学显示器,光开关,压电换能器和表面声波器件。 还提供了形成Ir-M-O复合膜阻挡层和Ir-M-O复合膜铁电电极的方法。