Abstract:
Various embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer. In other embodiments, electrochemically fabricated structures are formed on dielectric substrates.
Abstract:
An HF vapor etch etches high aspect ratio openings to form MEMS devices and other tightly-packed semiconductor devices with 0.2 μm air gaps between structures. The HF vapor etch etches oxide plugs and gaps with void portions and oxide liner portions and further etches oxide layers that are buried beneath silicon and other structures and is ideally suited to release cantilevers and other MEMS devices. The HF vapor etches at room temperature and atmospheric pressure in one embodiment. A process sequence is provided that forms MEMS devices including cantilevers and lateral, in-plane electrodes that are stationary and vibration resistant.
Abstract:
A method of fabricating micro-electromechanical switches (MEMS) integrated with conventional semiconductor interconnect levels, using compatible processes and materials is described. The method is based upon fabricating a capacitive switch that is easily modified to produce various configurations for contact switching and any number of metal-dielectric-metal switches. The process starts with a copper damascene interconnect layer, made of metal conductors inlaid in a dielectric. All or portions of the copper interconnects are recessed to a degree sufficient to provide a capacitive air gap when the switch is in the closed state, as well as provide space for a protective layer of, e.g., Ta/TaN. The metal structures defined within the area specified for the switch act as actuator electrodes to pull down the movable beam and provide one or more paths for the switched signal to traverse. The advantage of an air gap is that air is not subject to charge storage or trapping that can cause reliability and voltage drift problems. Instead of recessing the electrodes to provide a gap, one may just add dielectric on or around the electrode. The next layer is another dielectric layer which is deposited to the desired thickness of the gap formed between the lower electrodes and the moveable beam that forms the switching device. Vias are fabricated through this dielectric to provide connections between the metal interconnect layer and the next metal layer which will also contain the switchable beam. The via layer is then patterned and etched to provide a cavity area which contains the lower activation electrodes as well as the signal paths. The cavity is then back-filled with a sacrificial release material. This release material is then planarized with the top of the dielectric, thereby providing a planar surface upon which the beam layer is constructed.
Abstract:
A production method of a micromachine includes a polysilicon film forming step which overlays grooves, defined in an upper surface of a sacrificial layer on a silicon substrate, with polysilicon layer so as to be flat. The production method includes a first processing step for filling the grooves by adding a lower laid portion of the polysilicon layer onto a sacrificial layer. The lower laid portion has a thickness greater than 0.625 times relative to a width of the grooves. The production method of the micromachine further includes a second processing step for making the polysilicon layer to have a predetermined thickness by adding a upper laid portion of the polysilicon layer on the lower laid portion to form the polysilicon layer, the upper laid portion formed by depositing polysilicon which has the same impurity concentration as the lower laid portion does.
Abstract:
An HF vapor etch etches high aspect ratio openings to form MEMS devices and other tightly-packed semiconductor devices with 0.2 um air gaps between structures. The HF vapor etch etches oxide plugs and gaps with void portions and oxide liner portions and further etches oxide layers that are buried beneath silicon and other structures and is ideally suited to release cantilevers and other MEMS devices. The HF vapor etches at room temperature and atmospheric pressure in one embodiment. A process sequence is provided that forms MEMS devices including cantilevers and lateral, in-plane electrodes that are stationary and vibration resistant.
Abstract:
A method of fabricating micro-electromechanical switches (MEMS) integrated with conventional semiconductor interconnect levels, using compatible processes and materials is described. The method is based upon fabricating a capacitive switch that is easily modified to produce various configurations for contact switching and any number of metal-dielectric-metal switches. The process starts with a copper damascene interconnect layer, made of metal conductors inlaid in a dielectric. All or portions of the copper interconnects are recessed to a degree sufficient to provide a capacitive air gap when the switch is in the closed state, as well as provide space for a protective layer of, e.g., Ta/TaN. The metal structures defined within the area specified for the switch act as actuator electrodes to pull down the movable beam and provide one or more paths for the switched signal to traverse. The advantage of an air gap is that air is not subject to charge storage or trapping that can cause reliability and voltage drift problems. Instead of recessing the electrodes to provide a gap, one may just add dielectric on or around the electrode. The next layer is another dielectric layer which is deposited to the desired thickness of the gap formed between the lower electrodes and the moveable beam that forms the switching device. Vias are fabricated through this dielectric to provide connections between the metal interconnect layer and the next metal layer which will also contain the switchable beam. The via layer is then patterned and etched to provide a cavity area which contains the lower activation electrodes as well as the signal paths. The cavity is then back-filled with a sacrificial release material. This release material is then planarized with the top of the dielectric, thereby providing a planar surface upon which the beam layer is constructed.
Abstract:
Various embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer. In other embodiments, electrochemically fabricated structures are formed on dielectric substrates.
Abstract:
A production method of a micromachine includes a polysilicon film forming step which overlays grooves, defined in an upper surface of a sacrificial layer on a silicon substrate, with polysilicon layer so as to be flat. The production method includes a first processing step for filling the grooves by adding a lower laid portion of the polysilicon layer onto a sacrificial layer. The lower laid portion has a thickness greater than 0.625 times relative to a width of the grooves. The production method of the micromachine further includes a second processing step for making the polysilicon layer to have a predetermined thickness by adding a upper laid portion of the polysilicon layer on the lower laid portion to form the polysilicon layer, the upper laid portion formed by depositing polysilicon which has the same impurity concentration as the lower laid portion does.