Abstract:
An aerogel that includes an open-cell structured polymer matrix is disclosed. The aerogel includes 5 wt. % to 50 wt. % of a polyamic amide polymer, based on the total weight of the aerogel, pores and at least 90% of the pore volume of the aerogel is made up of macropores, a porosity of at least 50%, as measure according to ASTM D4404-10, a density of 0.01 g/cm3 to 0.5 g/cm3, and the aerogel is thermally stable to resist browning at 330° C.
Abstract:
Absorbable medical devices based on novel foams and films made from semi-crystalline, segmented copolymers of lactide and epsilon-caprolactone exhibiting long term absorption characteristics are disclosed. Also disclosed are methods of producing said foams and films, and useful polymer solutions.
Abstract:
Power generators that incorporate porous electric generation layers composed of mechanoradical-forming polymers are provided. Also provided are methods for using the generators to convert mechanical energy into and electrical signal to power electronic devices. The porous electric generation material includes an organic polymer that forms free radicals when covalent bonds are homolytically ruptured upon the application of a compressive force to the porous structure.
Abstract:
The objective of the present invention is to provide a method for easily producing a porous cellulose particle which can be used as an adsorbent for various substances in a safe manner without using a highly toxic solvent such as a calcium thiocyanate solution. In addition, the objective of the present invention is to provide a porous particle produced by the production method, an adsorbent which contains the porous particle and by which a highly pure protein can be efficiently purified in a safe manner, and a method for purifying a protein by using the adsorbent. The method for producing a porous particle according to the present invention is characterized in comprising the steps of preparing a solution containing cellulose and an ionic liquid; preparing a dispersion by dispersing the obtained cellulose solution into a liquid, wherein the liquid is not compatible with the ionic liquid; and coagulating the dispersion by bringing into contact with an alcohol or an alcohol aqueous solution in order in order to obtain the porous particle.
Abstract:
A process for forming polymer particles with aligned pores and controlled narrow particle size distribution, including: a) forming an oil phase by dissolving a polymeric binder in a solvent; b) dispersing the oil phase into a water phase containing a controlled amount of particulate stabilizer and forming an oil-in-water emulsion of controlled narrow dispersed oil phase droplet size distribution; c) freezing the emulsion to freeze solvent in the oil droplets to form frozen solvent domains within the polymeric binder, and also the water in the continuous water phase; and d) removing the frozen solvent from the polymeric binder and the frozen water in the continuous water phase, thereby forming porous polymer particles of controlled narrow particle size distribution and containing directional aligned non-spherical pore structures. Optionally, the porous particles may contain encapsulated functional ingredients.
Abstract:
A novel method of manufacturing thick foams, especially molded thick foams useful as tissue scaffolds and other medical devices. Also disclosed are novel thick foams made using the process of the present invention, wherein such thick foams may be used as medical devices or components of medical devices.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Biocompatible polyhydroxyalkanoate compositions with controlled degradation rates have been developed. In one embodiment, the polyhydroxyalkanoates contain additives to alter the degradation rates. In another embodiment, the polyhydroxyalkanoates are formed of mixtures of monomers or include pendant groups or modifications in their backbones to alter their degradation rates. In still another embodiment, the polyhydroxyalkanoates are chemically modified. Methods for manufacturing the devices which increase porosity or exposed surface area can be used to alter degradability. For example, as demonstrated by the examples, porous polyhydroxyalkanoates can be made using methods that creates pores, voids, or interstitial spacing, such as an emulsion or spray drying technique, or which incorporate leachable or lyophilizable particles within the polymer. Examples describe poly(4HB) compositions including foams, coatings, meshes, and microparticles. As demonstrated by the examples, these polyhydroxyalkanoate compositions have extremely favorable mechanical properties, as well as are biocompatible and degrade within desirable time frames under physioogical conditions. These polyhydroxyalkanoate materials provide a wider range of polyhydroxyalkanoate degradation rates than are currently available. Methods for processing these materials, particularly for therapeutic, prophylactic or diagnostic applications, or into devices which can be implanted or injected, are also described.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.