Abstract:
A compression ignition engine fuel includes 98.0% to 99.9% by weight of methanol and 0.01% to 2.0% by weight of an alkyl nitrate or mixture of alkyl nitrates.
Abstract:
The testing of various chemicals has yielded new chemicals and chemical mixtures for the use of removing carbon deposits from the internal combustion engine. Some of these chemicals and chemical mixtures have proven to work better across many different carbon types than other chemicals that were tested. These chemical terpenes are typically produced from plants. One standard terpene mixture is known as turpentine. The chemical turpentine and chemicals found in turpentine have been determined, through our research and testing, to be extremely effective at removing the carbon that is produced within the internal combustion engine.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.
Abstract:
An apparatus for producing polyethylene glycol dinitrate. The apparatus includes providing continuously an acid composition and a glycol composition to a reaction apparatus; reacting the acid composition and the glycol composition in the reaction apparatus in a continuous manner to generate a reaction composition; using an alkaline composition to at least partially neutralize the reaction composition to cause at least a portion of the polyethylene glycol dinitrate to deposit from a solution of the reaction composition; and extracting the deposit of polyethylene glycol dinitrate.
Abstract:
A fuel composition for use in internal-combustion engines has a fuel component, an alcohol component, a water component, a microemulsion blend, and a cetane-enhancer component. The microemulsion blend includes at least one of lower grade fatty acid derivatives being present in an amount effective for the fuel, alcohol, and water components to form a microemulsion blend. The emulsifier is present in an amount effective for the biodiesel fuel, alcohol, water, and emulsifier to form an emulsion.
Abstract:
A method of introducing additives to an air intake system of an engine in order to overcome one or more of the various problems created by formulation of additives in fuels. The method controls at least one of the amount, aerosol particle size and timing of introduction of additives based on information relevant to operation of the engine. The introduced additives form an air-additive mixture and are carried by the airflow in the air-intake system to the combustion chamber of the engine. Another aspect of the invention is an additive introduction system that includes one or more containers for additives, a control system for determining at least one of the amount, aerosol particle size and timing of introduction of the additives, and a device to introduce the additives into the air intake system under the control of the control system.
Abstract:
Compositions containing phenolic antioxidant solutions are provided. The invention further provides methods of making and using such compositions as well as compositions that contain both biodiesel and at least one antioxidant concentrate solutions and blended fuel compositions containing biodiesel blended with other fuels.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.
Abstract:
A fuel composition for use in internal-combustion engines has a fuel component, an alcohol component, a water component, a microemulsion blend, and a cetane-enhancer component. The microemulsion blend includes at least one of lower grade fatty acid derivatives being present in an amount effective for the fuel, alcohol, and water components to form a microemulsion blend. The emulsifier is present in an amount effective for the biodiesel fuel, alcohol, water, and emulsifier to form an emulsion.
Abstract:
A blendstock for forming a fuel composition for use in internal-combustion engines, includes a polar fluid component, a microblender component, and a neutralizer component. The neutralizer component is present in an amount effective to substantially neutralize the microblender component to allow for the microblender component to substantially spontaneously blend with the polar fluid component. The polar fluid component may include a water component and an alcohol component, and the neutralizer component may include an ammonia component. The blendstock may be added to a hydrocarbon fuel, such as diesel fuel, to form the fuel composition.