Abstract:
Disclosed are an optical member and a display device having the same. The optical member includes a first substrate, a plurality of wavelength conversion parts provided on the first substrate while being spaced apart from each other, and a sealing layer on a top surface of the wavelength conversion parts and at a lateral side of the wavelength conversion parts. Each of the wavelength conversion parts includes a host on the first substrate, and a plurality of wavelength conversion particles in the host.
Abstract:
A glass composition according to the present invention comprises: transition metals; phosphorus; barium; and zinc, the transition metals including: vanadium; and tungsten and/or iron, the glass composition not containing substances included in the JIG level A and B lists, an softening point of the glass composition being from 430 to 530° C., an average linear expansion coefficient of the glass composition being from 6 to 9 ppm/° C. at temperatures from 30 to 250° C.
Abstract:
A method for forming a vent port in a glass panel and a glass panel product manufactured using the same. The vent port has no protruding vent pipe, such that the vent port discharging gas from a sealed space to the outside is formed in either one of a pair of plate glasses separated in a thickness-direction to form the sealed space therebetween, produced by: forming an exhaust hole in either one of the plate glasses; vertically inserting a vent-pipe-type sealing material into the upper portion of the exhaust hole; discharging gas from a space between the plate glasses to the outside; heating the sealant member such that the sealing material is converted into fluid and the exhaust hole is closed by the sealing material having collapsed after being heated; and solidifying the sealing material remaining in the exhaust hole, ensuring good sealing properties without using a protruding vent pipe.
Abstract:
The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760 Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectric glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation. The protecting layer, which may be formed by using thermal Chemical Vapor Deposition (CVD) method, plasma enhanced CVD method, or a vapor deposition method with irradiation of ion or electron beam, will have a high sputtering resistance and effectively protect the dielectrics glass layer. Such a protecting layer contributes to the improvement of the panel life.
Abstract:
Barrier in a color plasma display panel (PDP) and a method for manufacturing the same are disclosed; the partion of the color plasma display panel (PDP) including a barrier formed of frit glass between upper and lower substrates each having electrodes of a regular interval for making a cell; and the method including the steps of coating a frit glass paste of a predetermined thickness on the lower substrate, drying and baking the coated frit glass paste to form a frit glass, defining unnecessary portions on a surface of the frit glass, and removing the unnecessary portions of the frit glass to form frit glass barriers spaced regular intervals apart from one another.
Abstract:
A multiplex wiring circuit for a gas discharge panel which reduces the number of driver circuits normally used, by a unique capacitive coupling to the display electrodes through a multiplex circuit arranged on the peripheral portions of the display substrates.
Abstract:
A deposition mask comprises a mask frame having an open window defined in a center thereof, a first mask sheet placed on the mask frame and including a plurality of open regions and a separation region which separates the open regions, and a second mask sheet placed on the first mask sheet and including a first aperture portion in a region which contacts the separation region of the first mask sheet.
Abstract:
Provided is a manufacturing method for a refractory filler, comprising melting a raw material batch and cooling the resultant melt to precipitate willemite as a main crystal phase.
Abstract:
For reducing EMI and simplifying driving circuits, a plasma display panel includes a first substrate and a second substrate disposed facing each other, a plurality of barrier ribs disposed between the first and second substrates and forming a plurality of discharge cells, a phosphor layer formed in each of the discharge cells, a plurality of address electrodes formed on the second substrate, and a plurality of display electrodes formed on the first substrate in a direction crossing the plurality of address electrodes. Terminals of the plurality of display electrodes are located at a same side of the plasma display panel between the first substrate and the second substrate.
Abstract:
A plasma display panel for multi-screen system comprising a front and a back dielectric plates; transparent and addressing electrodes orthogonally located between the plates; display cells defined by the mutually orthogonal electrodes; barrier ribs for separating and defining display cells from each other; and a very narrow sealing seam for sealing edge parts of the two plates. The sealing seam has a width ranging from about 0.3 mm to about 1.5 mm. The sealing material is a glass powder having a special composition that enables a low melting point. A concave groove accommodates the sealing material. The present invention prevents the image from missing between the adjacent units in the display matrix and eliminates the dark matrix border lines.