摘要:
Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
摘要:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
摘要:
A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
摘要:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
摘要:
A microelectronic device includes a tunneling pocket within an asymmetrical semiconductive body including source- and drain wells. The tunneling pocket is formed by a self-aligned process by removing a dummy gate electrode from a gate spacer and by implanting the tunneling pocket into the semiconductive body or into an epitaxial film that is part of the semiconductive body.
摘要:
A microelectronic device includes a tunneling pocket within an asymmetrical semiconductive body including source- and drain wells. The tunneling pocket is formed by a self-aligned process by removing a dummy gate electrode from a gate spacer and by implanting the tunneling pocket into the semiconductive body or into an epitaxial film that is part of the semiconductive body.
摘要:
Embodiments herein describe techniques for a thin-film transistor (TFT), which may include a substrate and a transistor above the substrate. The transistor includes a channel layer above the substrate, a gate dielectric layer adjacent to the channel layer, and a gate electrode separated from the channel layer by the gate dielectric layer. The gate dielectric layer includes a non-linear gate dielectric material. The gate electrode, the channel layer, and the gate dielectric layer form a non-linear capacitor. Other embodiments may be described and/or claimed.
摘要:
Different n- and p-types of device fins are formed by epitaxially growing first epitaxial regions of a first type material from a substrate surface at a bottom of first trenches formed between shallow trench isolation (STI) regions. The STI regions and first trench heights are at least 1.5 times their width. The STI regions are etched away to expose the top surface of the substrate to form second trenches between the first epitaxial regions. A layer of a spacer material is formed in the second trenches on sidewalls of the first epitaxial regions. Second epitaxial regions of a second type material are grown from the substrate surface at a bottom of the second trenches between the first epitaxial regions. Pairs of n- and p-type fins can be formed from the first and second epitaxial regions. The fins are co-integrated and have reduced defects from material interface lattice mismatch.
摘要:
Transistors suitable for high voltage and high frequency operation. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, and drain and source contacts similarly coaxially wrap completely around the drain and source regions.
摘要:
Transistor structures having channel regions comprising alternating layers of compressively and tensilely strained epitaxial materials are provided. The alternating epitaxial layers can form channel regions in single and multigate transistor structures. In alternate embodiments, one of the two alternating layers is selectively etched away to form nanoribbons or nanowires of the remaining material. The resulting strained nanoribbons or nanowires form the channel regions of transistor structures. Also provided are computing devices comprising transistors comprising channel regions comprised of alternating compressively and tensilely strained epitaxial layers and computing devices comprising transistors comprising channel regions comprised of strained nanoribbons or nanowires.