Transient voltage suppression device and manufacturing method therefor

    公开(公告)号:US11887979B2

    公开(公告)日:2024-01-30

    申请号:US17267835

    申请日:2019-08-15

    Abstract: A transient voltage suppression device and a manufacturing method therefor, the transient voltage suppression device including: a substrate, a first conductivity type well region and a second conductivity type well region disposed in the substrate. The first conductivity type well region includes a first well, a second well, and a third well. The second conductivity type well region includes a fourth well that isolates the first well from the second well, and a fifth well that isolates the second well from the third well. The device further includes a Zener diode well region provided in the first well, a first doped region provided in the Zener diode well region, a second doped region provided in the Zener diode well region, a third doped region provided in the second well, a fourth doped region provided in the third well, and a fifth doped region provided in the third well.

    SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR

    公开(公告)号:US20240006492A1

    公开(公告)日:2024-01-04

    申请号:US18258180

    申请日:2021-08-10

    Inventor: Dong FANG Kui XIAO

    Abstract: The present disclosure relates to a semiconductor device and a manufacturing method therefor. The semiconductor device includes: a base, where a first surface of the base is provided with a first trench and a second trench; a gate, provided in the first trench; a gate insulation isolation structure, provided in the first trench, wherein the gate insulation isolation structure covers the gate at a bottom, sides and a top of the gate; a source doped region, provided in the base, on both sides of the first trench and on both sides of the second trench; a trench conductive structure, provided in the second trench; a source electrode, provided on the trench conductive structure and the source doped region, and electrically connected to the trench conductive structure and the source doped region; and a drain electrode, provided on a second surface of the base. The semiconductor device in the present disclosure, in addition to be conducted through a channel, can also be conducted through the trench conductive structure; thus, conductivity thereof is stronger. Since the channel conducts faster, a turn-on voltage (forward voltage drop) thereof is lower.

    SUPER-ß BIPOLAR JUNCTION TRANSISTOR AND MANUFACTURING METHOD THEREFOR

    公开(公告)号:US20240006477A1

    公开(公告)日:2024-01-04

    申请号:US18254986

    申请日:2022-07-22

    Abstract: A manufacturing method for a super-β bipolar junction transistor includes providing a substrate, and forming a first conductive type isolation buried layer and a first conductive type doped layer based on the substrate. The isolation buried layer is located at a bottom of the doped layer. The method also includes forming a second conductive type base region in the doped layer and forming a second conductive type doped island on a peripheral side of the base region. A doping concentration of the doped island is greater than that of the base region. Additionally, the method includes forming a first conductive type collector region in the doped layer, and the collector region is spaced from the base region. Further, the method includes forming a first conductive type emitter region in the base region.

    SEMICONDUCTOR MEMORY
    95.
    发明公开

    公开(公告)号:US20230154549A1

    公开(公告)日:2023-05-18

    申请号:US17916927

    申请日:2021-04-28

    CPC classification number: G11C16/30 G11C16/26

    Abstract: A semiconductor memory, comprising a negative voltage providing unit, which is used for providing a first negative voltage to a word line during a read operation, and comprises: a clamping unit that comprises an input end, a control end and an output end, wherein the input end is coupled to a common ground end of the memory, and the control end is used for receiving a first signal; an energy storage capacitor, a first end of which is coupled to the output end, and a second end that is used for receiving a second signal; and a negative voltage providing end which is coupled to the first end, wherein the clamping unit is used for: pulling the voltage at the output end to the voltage at the input end when the first signal is “0”; and clamping the output end at a clamping voltage when the first signal is “1”.

    Flash device and manufacturing method thereof

    公开(公告)号:US11605641B2

    公开(公告)日:2023-03-14

    申请号:US17257087

    申请日:2019-10-12

    Abstract: A flash device and a manufacturing method thereof. The method comprises: providing a substrate, and forming, on the substrate, a floating gate polycrystalline layer, a floating gate oxide layer, and a tunneling oxide layer; wherein the floating gate polycrystalline layer is formed on the substrate, the floating gate oxide layer is formed between the substrate and the floating gate polycrystalline layer, a substrate region at one side of the floating gate polycrystalline layer is a first substrate region, a substrate region at the other side of the floating gate polycrystalline layer is a second substrate region; forming, on the tunneling oxide layer, located in the first substrate region, a continuous non-conductive layer, the non-conductive layer extending to the tunneling oxide layer at a side wall of the floating gate polycrystalline layer; and forming, on the tunneling oxide layer, a polysilicon layer.

    ANALOG-TO-DIGITAL CONVERTER AND THERMOPILE ARRAY

    公开(公告)号:US20230067583A1

    公开(公告)日:2023-03-02

    申请号:US17796952

    申请日:2021-05-27

    Inventor: Chen LI Hao WANG

    Abstract: An analog-to-digital converter and a thermopile array. The analog-to-digital converter comprises: a reference voltage generation circuit comprising a voltage generation unit; a chopping modulation unit used to perform chopping modulation on a voltage signal generated by the voltage generation unit, and to modulate low frequency noise of the voltage signal into high frequency noise; and a low-pass filter used to eliminate the high frequency noise to obtain a reference voltage. The invention employs a simple structure to obtain a low noise reference voltage at low costs.

    Semiconductor device and manufacturing method therefor

    公开(公告)号:US11552164B2

    公开(公告)日:2023-01-10

    申请号:US17265565

    申请日:2019-08-09

    Abstract: A semiconductor device comprises: a substrate; a well region provided in the substrate, having a second conductivity type; source regions having a first conductivity type; body tile regions having the second conductivity type, the source regions and the body tie regions being alternately arranged in a conductive channel width direction so as to form a first region extending along the conductive channel width direction, and a boundary where the edges of the source regions and the edges of the body tie regions are alternately arranged being formed on two sides of the first region; and a conductive auxiliary region having the first conductivity type, provided on at least one side of the first region, and directly contacting the boundary, a contact part comprising the edge of at least one source region on the boundary and the edge of at least one body tie region on the boundary.

    MEMS MICROPHONE AND PREPARATION METHOD THEREFOR

    公开(公告)号:US20220386052A1

    公开(公告)日:2022-12-01

    申请号:US17761669

    申请日:2020-05-26

    Abstract: A preparation method for a micro-electromechanical systems (MEMS) microphone includes the steps of: providing a silicon substrate having a silicon surface; forming an enclosed cavity in the silicon substrate; forming a plurality of spaced apart acoustic holes in the silicon substrate, each acoustic hole having two openings, one of which communicating with the cavity and the other one located on the silicon surface; forming a sacrificial layer on the silicon substrate, which includes a first filling portion, a second filling portion and a shielding portion; forming a polysilicon layer on the shielding portion; forming a recess in the silicon substrate on the side away from the silicon surface; and removing the first filling portion, the second filling portion and part of the shielding portion so that the recess is brought into communication with the cavity to form a back chamber, and that the polysilicon layer, the remainder of the shielding portion and the silicon substrate together delimit a hollow chamber, the hollow chamber communicating with the opening of the plurality of acoustic holes away from the cavity, completing the MEMS microphone.

Patent Agency Ranking