Abstract:
The present application describes a feed forward method that may electronically cancel self-interference while it is still in the transmit path. It may employ delay length matching for electronic cancellation over large bandwidths.
Abstract:
The present application describes systems and methods of performing self-interference cancellation. Such systems may include generating a transmit signal along a transmit path of a transceiver, where the transmit signal can be sent through a circulator to isolate the transmit signal from a receiver. The transmit signal may be transmitted from an antenna, and a signal may be reflected from the antenna, where the reflected signal may be at less power than an incident power to the antenna, and where the reflected signal may include a transmitter carrier signal and a transmitter noise. A received signal may be routed from the antenna to the receiver, the reflected signal may be routed through a filter and a phase shifter, and the signal may be combined with the received signal in the receive path to cancel the portion of the transmit signal that entered the receive path towards the receiver from the circulator.
Abstract:
The present application describes a computer-implemented method for configuring a front end including sweeping a first tone through the frequency band of the receive channel; receiving a first signal and a second signal containing interference; characterizing the receive channel using the first tone; processing the compensated first signal using an infinite impulse response filter based on the characterized receive channel to generate an interference cancelling signal; and coupling the interference cancelling signal to the second signal to generate an interference cancelled receive signal.
Abstract:
The present application is directed to a solid state device for detecting neutrons. The device includes a semiconductor substrate having pores. The device also includes a p- or n-type doping layer formed on a surface of the pores. Moreover, a layer of fill material is formed on the p- or n-type doping layer. The present application also is directed to a method of making a solid state device. Further, the present application is directed to a method of detecting efficiency of solid state detector devices.
Abstract:
There is provided a method for forming a graphene layer. The method includes forming an article that comprises a carbon-containing self-assembled monolayer (SAM). A layer of nickel is deposited on the SAM. The article is heated in a reducing atmosphere and cooled. The heating and cooling steps are carried out so as to convert the SAM to a graphene layer.
Abstract:
An apparatus comprising apparatus, comprising an optical waveguide configured to receive an optical signal at an input wavelength, the optical waveguide including an optical gain medium. The apparatus also comprises one or more optical pump sources connected to transmit pump light to the optical gain medium such that the optical gain medium is able to amplify the optical signal. The apparatus also comprises an optical feedback loop that includes the optical gain medium and at least a portion of the optical waveguide, wherein a round-trip optical gain of the optical feedback loop is higher at an optical wavelength of the pump light than at the input wavelength.
Abstract:
A deposition apparatus comprising a vaporizer chamber configured to hold a solid precursor of a dopant element therein. Gas input and output lines are connected to the vaporizer chamber and flow rate controllers are coupled to each of the gas input and output lines. The flow rate controllers are configured to adjust a rate of carrier gas flow into and out of the vaporizer chamber through the gas input and output lines. The vaporizer chamber has a temperature controller and pressure controller to produce vapors of the solid precursor in the vaporizer chamber that can be carried with the carrier gas flow through the output line.
Abstract:
An apparatus includes a gas dispersal plate and an adapter structure. The gas dispersal plate has a plurality of gas dispersion orifices, wherein one or more of the gas dispersion orifices have a first portion with a first cross-section configured to allow entry of gas and a second portion having a second cross-section configured to allow exit of gas, the first cross-section being smaller than the second cross-section.
Abstract:
The present application is directed a computer-implemented methods and systems implementing control policies created or modified by Software Defined Network applications. The control policies can be provided to SDN controllers for implementation.
Abstract:
Methods and systems for operating a moving platform to determine an identity of an unidentified target are disclosed. In an example method to determine the identity of the unidentified target, a first moving platform, configured with a first type of sensor, is caused to move to an area associated with the target. An attempt is made to determine, via the first moving platform and the first type of sensor, the identity of the target. Based on the attempt, a second moving platform, configured with a second type of sensor, is caused to move to the area. The identity of the target is determined via the second moving platform and the second type of sensor.