Abstract:
Lithographic apparatus includes a substrate table and a motion control system for controlling a movement of the substrate table. The motion control system includes at least 3 position detectors constructed for detecting a position of the substrate table. For measuring a position and orientation of the substrate table, each position detector comprises an optical encoder of a single dimensional or multi dimensional type, the optical encoders being arranged for providing together at least 6 position values, at least one position value being provided for each of the 3 dimensions. Some of the optical encoders may be connected to the substrate table at different locations in the 3 dimensional coordinate system. The motion control system is arranged to calculate the position of the substrate table in the 3 dimensional coordinate system from a subset of at least 3 of the 6 position values and to calculate an orientation of the substrate table with respect to the coordinate system from another subset of at least 3 of the 6 position values. Further, a method for calibrating the position detectors is presented.
Abstract:
A lithographic apparatus includes an illumination system configured to provide a beam of radiation, a support configured to support a patterning device, a substrate table and a projection system. Furthermore, the lithographic apparatus includes a plurality of EUV sources for providing EUV radiation to the illumination system and distribution means which are arranged to convert the EUV radiation from each of the EUV sources into an intermediate beam of radiation. The intermediate beam of radiation is directed from the distribution means in a first direction by a mirror surface. The distribution means further comprise a rotationally driven mirror arrangement, the axis of rotation being non-parallel to the mirror surface.
Abstract:
A lithographic apparatus has a mask table adapted to accommodate a mask in at least two positions so that a mask with a pattern area larger than the exposure field can be imaged by first performing an exposure with the mask in the first position and then performing a second exposure with the mask in the second position.
Abstract:
In an off-axis levelling procedure a height map of the substrate is generated at a measurement station. The height map is referenced to a physical reference surface of the substrate table. The physical reference surface may be a surface in which is inset a transmission image sensor. At the exposure station the height of the physical reference surface is measured and related to the focal plane of the projection lens. The height map can then be used to determine the optimum height and/or tilt of substrate table to position the exposure area on the substrate in best focus during exposure. The same principles can be applied to (reflective) masks.
Abstract:
A detector detects liquid in the path of a projection beam or alignment beam. A controller then determines which one or more of a plurality of compensating optical elements may be provided in the optical path of the projection beam or alignment beam in order to focus the projection beam or alignment beam on the surface of the substrate. The appropriate optical element may be placed in the path of the projection beam or alignment beam directly as a final element of the projection system or alignment system respectively.
Abstract:
A lithographic projection apparatus is disclosed for use with an immersion liquid positioned between the projection system and a substrate. Several methods and mechanism are disclosed to protect components of the projection system, substrate table and a liquid confinement system. These include providing a protective coating on a final element of the projection system as well as providing one or more sacrificial bodies upstream of the components. A two component final optical element of CaF2 is also disclosed.
Abstract:
A lithographic apparatus uses the control signal from a computer to drive two spatial light modulators to pattern two separate projection beams for projection onto two substrates.
Abstract:
In a lithographic projection apparatus, there is provided a liquid supply system comprising a container at least partly defining a space between the projection system and the substrate, the container having a selectively openable and closeable aperture therein, and a closure configured to selectively close and open the aperture. In an embodiment, the shutter may comprise a channel in a surface of the shutter facing the aperture and/or the shutter may be displaced from the liquid supply system when connected to the liquid supply system. Further, in a lithographic apparatus, there is provided a liquid supply system configured to provide a liquid, through which the beam is to be projected, in a space between a projection system and a substrate and a controller configured to control application to the projection system of a force related to a weight transfer attributable to a member of the liquid supply system.