摘要:
The invention includes methods of forming conductive metal suicides by reaction of metal with silicon. In one implementation, such a method includes providing a semiconductor substrate comprising an exposed elemental silicon containing surface. At least one of a crystalline form TiN, WN, elemental form W, or SiC comprising layer is deposited onto the exposed elemental silicon containing surface to a thickness no greater than 50 Angstroms. Such layer is exposed to plasma and a conductive reaction layer including at least one of an elemental metal or metal rich silicide is deposited onto the plasma exposed layer. At least one of metal of the conductive reaction layer or elemental silicon of the substrate is diffused along columnar grain boundaries of the crystalline form layer effective to cause a reaction of metal of the conductive reaction layer with elemental silicon of the substrate to form a conductive metal silicide comprising contact region electrically connecting the conductive reaction layer with the substrate. Other aspects and implementations are contemplated.
摘要:
The invention includes methods in which at least two different precursors are flowed into a reaction chamber at different and substantially non-overlapping times relative to one another to form a material over at least a portion of a substrate, and in which at least one of the precursors is asymmetric with respect to a physical property. A field influencing the asymmetric physical property is oriented within the reaction chamber, and is utilized to affect alignment of the precursor having the asymmetric property as the material is formed. The asymmetric physical property can, for example, be an anisotropic charge distribution associated with the precursor, and in such aspect, the field utilized to influence the asymmetric physical property can be an electric field provided within the reaction chamber and/or a magnetic field provided within the reaction chamber. The methodology of the present invention can be utilized in atomic layer deposition processes.
摘要:
Reactors, systems with reaction chambers, and methods for depositing materials onto micro-device workpieces are disclosed herein. In one embodiment, a method for depositing material onto a micro-device workpiece includes flowing a first gas along a first vector across a first portion and toward a center of the micro-device workpiece and flowing a second gas along a second vector across a second portion and toward the center of the micro-device workpiece. The second vector is transverse to the first vector. The method can further include exhausting the first gas from a region proximate to the center of the micro-device workpiece and exhausting the second gas from the region proximate to the center of the micro-device workpiece. Flowing the first gas can include depositing the first gas uniformly from a perimeter region to a center region of the micro-device workpiece.
摘要:
Reactors for vapor deposition of materials onto a microelectronic workpiece, systems that include such reactors, and methods for depositing materials onto microelectronic workpieces. In one embodiment, a reactor for vapor deposition of a material comprises a reaction chamber and a gas distributor. The reaction chamber can include an inlet and an outlet. The gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate. For example, the occluded passageway can be canted at an oblique angle relative to the first surface of the distributor plate so that gas flowing through the canted passageway changes direction as it passes through the distributor plate.
摘要:
Capacitors having increased capacitance include an enhanced-surface-area (rough-surfaced) electrically conductive layer or other layers that are compatible with the high-dielectric constant materials. In one approach, an enhanced-surface-area electrically conductive layer for such capacitors is formed by processing a ruthenium oxide layer at high temperature at or above 500° C. and low pressure 75 torr or below, most desirably 5 torr or below, to produce a roughened ruthenium layer having a textured surface with a mean feature size of at least about 100 Angstroms. The initial ruthenium oxide layer may be provided by chemical vapor deposition techniques or sputtering techniques or the like. The layer may be formed over an underlying electrically conductive layer. The processing may be performed in an inert ambient or in a reducing ambient. A nitrogen-supplying ambient or nitrogen-supplying reducing ambient may be used during the processing or afterwards to passivate the ruthenium for improved compatibility with high-dielectric-constant dielectric materials. Processing in an oxidizing ambient may also be performed to passivate the roughened layer. The roughened layer of ruthenium may be used to form an enhanced-surface-area electrically conductive layer. The resulting enhanced-surface-area electrically conductive layer may form a plate of a storage capacitor in an integrated circuit, such as in a memory cell of a DRAM or the like. In another approach, a tungsten nitride layer is provided as an first electrode of such a capacitor. The capacitor, or at least the tungsten nitride layer, is annealed to increase the capacitance of the capacitor.
摘要:
A method for use with the formation of a capacitor includes providing a capacitor structure by forming a first electrode on a portion of a substrate assembly, forming a high dielectric material over at least a portion of the first electrode, and forming a second electrode over the high dielectric material. An additional layer may be formed over at least a portion of the second electrode. The portion of the substrate assembly on which the first electrode is formed and/or the layer formed over the second electrode are formed of an excess oxygen containing material.
摘要:
A method for forming a rough ruthenium-containing layer on the surface of a substrate assembly includes providing a ruthenium-containing precursor into the reaction chamber. A rough ruthenium layer may be deposited on the surface of the substrate assembly at a rate of about 100 Å/minute to about 500 Å/minute using the ruthenium-containing precursor. Further, a rough ruthenium oxide layer may be formed by providing a ruthenium-containing precursor and an oxygen-containing precursor into the reaction chamber to deposit the rough ruthenium oxide layer on the surface of the substrate assembly at a rate of about 100 Å/minute to about 1200 Å/minute. An anneal of the layers may be performed to further increase the roughness. In addition, conductive structures including a rough ruthenium layer or a rough ruthenium oxide layer are provided. Such layers may be used in conjunction with non-rough ruthenium and/or non-rough ruthenium oxide layers to form conductive structures. For example, such structures may be part of a capacitor structure, e.g., bottom electrode of a capacitor.
摘要:
A method for use with the formation of a capacitor includes providing a capacitor structure by forming a first electrode on a portion of a substrate assembly, forming a high dielectric material over at least a portion of the first electrode, and forming a second electrode over the high dielectric material. An additional layer may be formed over at least a portion of the second electrode. The portion of the substrate assembly on which the first electrode is formed and/or the layer formed over the second electrode are formed of an excess oxygen containing material.
摘要:
Formation of a capacitor includes providing a capacitor structure by forming a first electrode on a portion of a substrate assembly, forming a high dielectric material over at least a portion of the first electrode, and forming a second electrode over the high dielectric material. An additional layer may be formed over at least a portion of the second electrode. The portion of the substrate assembly on which the first electrode is formed and/or the layer formed over the second electrode are formed of an excess oxygen containing material.