摘要:
A semiconductor device includes a semiconductor body having a semiconductor body material with a dopant diffusion coefficient that is smaller than the corresponding dopant diffusion coefficient of silicon, at least one first semiconductor region doped with dopants of a first conductivity type and having a columnar shape that extends into the semiconductor body along an extension direction, wherein a respective width of the at least one first semiconductor region continuously increases along the extension direction; and at least one second semiconductor region included in the semiconductor body. The at least one second semiconductor region is arranged adjacent to the at least one first semiconductor region, and is doped with dopants of a second conductivity type complementary to the first conductivity type.
摘要:
A semiconductor device includes trench gate structures in a semiconductor body with hexagonal crystal lattice. A mean surface plane of a first surface is tilted to a crystal direction by an off-axis angle, wherein an absolute value of the off-axis angle is in a range from 2 degree to 12 degree. The trench gate structures extend oriented along the crystal direction. Portions of the semiconductor body between neighboring trench gate structures form transistor mesas. Sidewalls of the transistor mesas deviate from a normal to the mean surface plane by not more than 5 degree.
摘要:
A method of forming a semiconductor device and a semiconductor device are provided. The method includes providing a wafer stack including a carrier wafer comprising graphite and a device wafer comprising a wide band-gap semiconductor material and having a first side and a second side opposite the first side, the second side being attached to the carrier wafer, defining device regions of the wafer stack, partly removing the carrier wafer so that openings are formed in the carrier wafer arranged within respective device regions and that the device wafer is supported by a residual of the carrier wafer; and further processing the device wafer while the device wafer remains supported by the residual of the carrier wafer.
摘要:
A method of producing a semiconductor device and a wafer structure are provided. The method includes attaching a donor wafer comprising silicon carbide to a carrier wafer comprising graphite, splitting the donor wafer along an internal delamination layer so that a split layer comprising silicon carbide and attached to the carrier wafer is formed, removing the carrier wafer above an inner portion of the split layer while leaving a residual portion of the carrier wafer attached to the split layer to form a partially supported wafer, and further processing the partially supported wafer.
摘要:
A method for forming a semiconductor device includes forming at least one graphene layer on a surface of a semiconductor substrate. The method further includes forming a silicon carbide layer on the at least one graphene layer.
摘要:
A method of manufacturing a device comprises depositing one or more metallization layers to a substrate, locally heating an area of the one or more metallization layers to obtain a substrate/metallization-layer compound or a metallization-layer compound, the compound comprising an etch-selectivity toward an etching medium which is different to that of the one or more metallization layers outside the area, and removing the one or more metallization layers in the area or outside the area, depending on the etching selectivity in the area or outside the area, by etching with the etching medium to form the device.
摘要:
A silicon carbide device includes a silicon carbide substrate, an inorganic passivation layer structure and a molding material layer. The inorganic passivation layer structure laterally covers at least partly a main surface of the silicon carbide substrate and the molding material layer is arranged adjacent to the inorganic passivation layer structure.
摘要:
A semiconductor component includes a semiconductor body of a first conduction type and a metal layer on the semiconductor body, wherein the metal layer forms with the semiconductor body a Schottky contact along a contact surface. A doping concentration of the first conduction type on the contact surface varies along a direction of the contact surface.
摘要:
A silicon carbide device includes an epitaxial silicon carbide layer having a first conductivity type and a buried lateral silicon carbide edge termination region within the epitaxial silicon carbide layer and having a second conductivity type. The buried lateral silicon carbide edge termination region is covered by a silicon carbide surface layer including a doping of ions of a transition metal or including an increased density of intrinsic point defects in comparison to a density of intrinsic point defects of the buried lateral silicon carbide edge termination region.
摘要:
A field-effect semiconductor device having a semiconductor body with a main surface is provided. The semiconductor body includes, in a vertical cross-section substantially orthogonal to the main surface, a drift layer of a first conductivity type, a semiconductor mesa of the first conductivity type adjoining the drift layer, substantially extending to the main surface and having two side walls, and two second semiconductor regions of a second conductivity type arranged next to the semiconductor mesa. Each of the two second semiconductor regions forms a pn-junction at least with the drift layer. A rectifying junction is formed at least at one of the two side walls of the mesa. Further, a method for producing a heterojunction semiconductor device is provided.