摘要:
A method for fabricating FET devices is disclosed. The method includes forming continuous fins of a semiconductor material and fabricating gate structures overlaying the continuous fins. After the fabrication of the gate structures, the method uses epitaxial deposition to merge the continuous fins to one another. Next, the continuous fins are cut into segments. The fabricated FET devices are characterized as being non-planar devices. A placement of non-planar FET devices is also disclosed, which includes non- planar devices that have electrodes, and the electrodes contain fins and an epitaxial layer which merges the fins together. The non-planar devices are so placed that their gate structures are in a parallel configuration separated from one another by a first distance, and the fins of differing non-planar devices line up in essentially straight lines. The electrodes of differing FET devices are separated from one another by a cut defined by opposing facets of the electrodes, with the opposing facets also defining the width of the cut. The width of the cut is smaller than one fifth of the first distance which separates the gate structures.
摘要:
A semiconductor device and method for forming the semiconductor device include forming structures in a semiconductor substrate. The structures have two or more different spacings between them. A dielectric material is deposited in the spacings. Ion species are implanted to a depth in the dielectric material to change an etch rate of the dielectric material down to the depth. The dielectric material having the ion species is etched selective to the dielectric material below the depth such that a substantially uniform depth in the dielectric material is created across the at least two spacings.
摘要:
Methods for fabricating FET device structures are disclosed. The methods include receiving a fin of a Si based material, and converting a region of the fin into an oxide element. The oxide element exerts pressure onto the fin where a Fin-FET device is fabricated. The exerted pressure induces compressive stress in the device channel of the Fin-FET device. The methods also include receiving a rectangular member of a Si based material and converting a region of the member into an oxide element. The methods further include patterning the member that N fins are formed in parallel, while being abutted by the oxide element, which exerts pressure onto the N fins. Fin-FET devices are fabricated in the compressed fins, which results in compressively stressed device channels. FET devices structures are also disclosed. An FET devices structure has a Fin-FET device with a fin of a Si based material. An oxide element is abutting the fin and exerts pressure onto the fin. The Fin-FET device channel is compressively stressed due to the pressure on the fin. A further FET device structure has Fin-FET devices in a row each having fins. An oxide element extending perpendicularly to the row of fins is abutting the fins and exerts pressure onto the fins. Device channels of the Fin-FET devices are compressively stressed due to the pressure on the fins.
摘要:
A device and method for fabrication of fin devices for an integrated circuit includes forming fin structures in a semiconductor material of a semiconductor device wherein the semiconductor material is exposed on sidewalls of the fin structures. A donor material is epitaxially deposited on the exposed sidewalls of the fin structures. A condensation process is applied to move the donor material through the sidewalls into the semiconductor material such that accommodation of the donor material causes a strain in the semiconductor material of the fin structures. The donor material is removed, and a field effect transistor is formed from the fin structure.
摘要:
A device and method for inducing stress in a semiconductor layer includes providing a substrate having a dielectric layer formed between a first semiconductor layer and a second semiconductor layer and processing the second semiconductor layer to form an amorphized material. A stress layer is deposited on the first semiconductor layer. The wafer is annealed to memorize stress in the second semiconductor layer by recrystallizing the amorphized material.
摘要:
A device includes a semiconductor substrate. A gate stack on the semiconductor substrate includes a gate dielectric layer and a gate conductor layer. Low-k spacers are adjacent to the gate dielectric layer. Raised source/drain (RSD) regions are adjacent to the low-k spacers. The low-k spacers are embedded in an ILD on the RSD regions.
摘要:
A method including providing a semiconductor substrate including a first semiconductor device and a second semiconductor device, the first and second semiconductor devices including dummy spacers, dummy gates, and extension regions; protecting the second semiconductor device with a mask; removing the dummy spacers from the first semiconductor device; and depositing in-situ doped epitaxial regions on top of the extension regions of the first semiconductor device.
摘要:
A device and method for fabrication of fin devices for an integrated circuit includes forming fin structures in a semiconductor material of a semiconductor device wherein the semiconductor material is exposed on sidewalls of the fin structures. A donor material is epitaxially deposited on the exposed sidewalls of the fin structures. A condensation process is applied to move the donor material through the sidewalls into the semiconductor material such that accommodation of the donor material causes a strain in the semiconductor material of the fin structures. The donor material is removed, and a field effect transistor is formed from the fin structure.
摘要:
A method of forming a semiconductor device includes forming a mandrel on top of a substrate; forming a first spacer adjacent to the mandrel on top of the substrate; forming a cut mask over the first spacer and the mandrel, such that the first spacer is partially exposed by the cut mask; partially removing the partially exposed first spacer; and etching the substrate to form a fin structure corresponding to the partially removed first spacer in the substrate.
摘要:
A method including providing a semiconductor substrate including a first semiconductor device and a second semiconductor device, the first and second semiconductor devices including dummy spacers, dummy gates, and extension regions; protecting the second semiconductor device with a mask; removing the dummy spacers from the first semiconductor device; and depositing in-situ doped epitaxial regions on top of the extension regions of the first semiconductor device.