摘要:
Structures and methods to form a bistable resistive random access memory for reducing the amount of heat dissipation from electrodes by confining a heating region in the memory cell device are described. The heating region is confined in a kernel comprising a programmable resistive memory material that is in contact with an upper programmable resistive memory member and a lower programmable resistive memory member. The lower programmable resistive member has sides that align with sides of a bottom electrode comprising a tungsten plug. The lower programmable resistive member and the bottom electrode function a first conductor so that the amount of heat dissipation from the first conductor is reduced. The upper programmable resistive memory material and a top electrode function as a second conductor so that the amount of heat dissipation from the second conductor is reduced.
摘要:
Memory cells comprising: a semiconductor substrate having at least two source/drain regions separated by a channel region; a charge-trapping structure disposed above the channel region; and a gate disposed above the charge-trapping structure; wherein the charge-trapping structure comprises a bottom insulating layer, a first charge-trapping layer, and a second charge-trapping layer, wherein an interface between the bottom insulating layer and the substrate has a hydrogen concentration of less than about 3×1011/cm−2, and methods for forming such memory cells.
摘要翻译:存储单元包括:半导体衬底,具有由沟道区分开的至少两个源极/漏极区域; 设置在通道区域上方的电荷捕获结构; 以及设置在电荷捕获结构上方的栅极; 其中所述电荷捕获结构包括底部绝缘层,第一电荷俘获层和第二电荷俘获层,其中所述底部绝缘层和所述基底之间的界面的氢浓度小于约3×1011 / cm -2,以及形成这种记忆单元的方法。
摘要:
A manufacturing method for stacked, non-volatile memory devices provides a plurality of bitline layers and wordline layers with charge trapping structures. The bitline layers have a plurality of bitlines formed on an insulating layer, such as silicon on insulator technologies. The wordline layers are patterned with respective pluralities of wordlines and charge trapping structures orthogonal to the bitlines.
摘要:
A memory comprises a number of word lines in a first direction, a number of bit lines in a second direction, each coupled to at least one of the word lines, and a number of memory elements, each coupled to one of the word lines and one of the bit lines. Each memory element comprises a top electrode for connecting to a corresponding word line, a bottom electrode for connecting to a corresponding bit line, a resistive layer on the bottom electrode, and at least two separate liners, each liner having resistive materials on both ends of the liner and each liner coupled between the top electrode and the resistive layer.
摘要:
A method of fabricating a semiconductor device is provided. The method comprises: (a) providing a first and a second conductor; (b) providing a conductive layer; (c) forming a part of the conductive layer into a data storage layer by a plasma oxidation process, wherein the data storage layer is positioned between the first and the second conductor.
摘要:
A method of manufacturing a non-volatile semiconductor memory device includes forming a sub-gate without an additional mask. A low word-line resistance is formed by a metal silicide layer on a main gate of the memory device. In operation, application of a voltage to the sub-gate forms a transient state inversion layer that serves as a bit-line, so that no implantation is required to form the bit-line.
摘要:
A method for operating a memory device includes applying a sequence of bias arrangements across a selected metal-oxide memory element to change among resistance states. The sequence of bias arrangements includes a first set of one or more pulses to change the resistance state of the selected metal-oxide memory element from the first resistance state to a third resistance state, and a second set of one or more pulses to change the resistance state of the selected metal-oxide memory element from the third resistance state to the second resistance state.
摘要:
A resistance random access memory in a bridge structure is disclosed that comprises a contact structure where first and second electrodes are located within the contact structure. The first electrode has a circumferential extending shape, such as an annular shape, surrounding an inner wall of the contact structure. The second electrode is located within an interior of the circumferential extending shape and separated from the first electrode by an insulating material. A resistance memory bridge is in contact with an edge surface of the first and second electrodes. The first electrode in the contact structure is connected to a transistor and the second electrode in the contact structure is connected to a bit line. A bit line is connected to the second electrode by a self-aligning process.
摘要:
A method is described for operating a bistable resistance random access memory having two memory layer stacks that are aligned in series is disclosed. The bistable resistance random access memory comprises two memory layer stacks per memory cell, the bistable resistance random access memory operates in four logic states, a logic “00” state, a logic “01” state, a logic “10” state and a logic “11” state. The relationship between the four different logic states can be represented mathematically by the two variables n and f and a resistance R. The logic “0” state is represented by a mathematical expression (1+f)R. The logic “1” state is represented by a mathematical expression (n+f)R. The logic “2” state is represented by a mathematical expression (1+nf)R. The logic “3” state is represented by a mathematical expression n(1+f)R.
摘要:
A memory device that selectably exhibits first and second logic levels. A first conductive material has a first surface with a first memory layer formed thereon, and a second conductive material has a second surface with a second memory layer formed thereon. A connective conductive layer joins the first and second memory layers and places the same in electrical contact. The structure is designed so that the first memory layer has a cross-sectional area less than that of the second memory layer.