摘要:
A time-dependent substrate temperature to be applied during a plasma process is determined. The time-dependent substrate temperature at any given time is determined based on control of a sticking coefficient of a plasma constituent at the given time. A time-dependent temperature differential between an upper plasma boundary and a substrate to be applied during the plasma process is also determined. The time-dependent temperature differential at any given time is determined based on control of a flux of the plasma constituent directed toward the substrate at the given time. The time-dependent substrate temperature and time-dependent temperature differential are stored in a digital format suitable for use by a temperature control device defined and connected to direct temperature control of the upper plasma boundary and the substrate. A system is also provided for implementing upper plasma boundary and substrate temperature control during the plasma process.
摘要:
A showerhead electrode, a gasket set and an assembly thereof in plasma reaction chamber for etching semiconductor substrates are provided with improved a gas injection hole pattern, positioning accuracy and reduced warping, which leads to enhanced uniformity of plasma processing rate. A method of assembling the inner electrode and gasket set to a supporting member includes simultaneous engagement of cam locks.
摘要:
A method for processing a substrate in a plasma processing chamber is provided. The substrate is disposed above a chuck and surrounded by an edge ring. The edge ring is electrically isolated from the chuck. The method includes providing RF power to the chuck. The method also includes providing a tunable capacitance arrangement. The tunable capacitance arrangement is coupled to the edge ring to provide RF coupling to the edge ring, resulting in the edge ring having an edge ring potential. The method further includes generating a plasma within the plasma processing chamber to process the substrate. The substrate is processed while the tunable capacitance arrangement is configured to cause the edge ring potential to be dynamically tunable to a DC potential of the substrate while processing the substrate.
摘要:
A plasma processing systems having at least one plasma processing chamber, comprising a movable grounding component, an RF contact component configured to receive RF energy from an RF source when the RF source provides the RF energy to the RF contact component, and a ground contact component coupled to ground. The plasma processing system further includes an actuator operatively coupled to the movable grounding component for disposing the movable grounding component in a first position and a second position. The first position represents a position whereby the movable grounding component is not in contact with at least one of the RF contact component and the ground contact component. The second position represents a position whereby the movable grounding component is in contact with both the RF contact component and the ground contact component.
摘要:
A temperature-controlled hot edge ring assembly adapted to surround a semiconductor substrate supported in a plasma reaction chamber is provided. A substrate support with an annular support surface surrounds a substrate support surface. A radio-frequency (RF) coupling ring overlies the annular support surface. A lower gasket is between the annular support surface and the RF coupling ring. The lower gasket is thermally and electrically conductive. A hot edge ring overlies the RF coupling ring. The substrate support is adapted to support a substrate such that an outer edge of the substrate overhangs the hot edge ring. An upper thermally conductive medium is between the hot edge ring and the RF coupling ring. The hot edge ring, RF coupling ring and annular support surface can be mechanically clamped. A heating element can be embedded in the RF coupling ring.
摘要:
A system and method of measuring a self bias DC voltage on a semiconductor wafer in a plasma chamber includes generating a plasma between a top electrode and a top surface of an electrostatic chuck in a plasma chamber including applying one or more RF signals to one or both of the top electrode and electrostatic chuck. The wafer is supported on the top surface of an electrostatic chuck. The self bias DC voltage is developed on the wafer. A vibrating electrode is oscillated to produce a variable capacitance, the vibrating electrode is located in the electrostatic chuck. An electrical current is developed in a sensor circuit. An output voltage is measured across a sampling resistor in the sensor circuit, a second DC potential is applied to the vibrating electrode to nullify the output voltage. The second DC potential is equal to the self bias DC voltage on the wafer.
摘要:
Methods, systems, and computer programs are presented for semiconductor manufacturing are provided. One wafer processing apparatus includes: a top electrode; a bottom electrode; a first radio frequency (RF) power source; a second RF power source; a third RF power source; a fourth RF power source; and a switch. The first, second, and third power sources are coupled to the bottom electrode. Further, the switch is operable to be in one of a first position or a second position, where the first position causes the top electrode to be connected to ground, and the second position causes the top electrode to be connected to the fourth RF power source.
摘要:
A plasma processing system has an upper electrode and a lower electrode. The upper electrode includes a first and a second upper electrode portions. The first upper electrode portion annularly surrounds the second upper electrode portion. The lower electrode includes a first and a second lower electrode portions, and the first lower electrode portion annularly surrounds the second lower electrode portion. A radio frequency (RF) power source provides RF energy to the second lower electrode portion. The lower surface of the first upper electrode portion is non-planar with a substrate-facing surface of the second upper electrode portion such that the first gap between the lower surface of the first upper electrode portion and the upper surface of the first lower electrode portion is smaller than the second gap between the substrate bearing surface of the second lower electrode portion and the substrate-facing surface of the second upper electrode portion.
摘要:
A plasma processing system having an upper electrode and a lower electrode is provided. The tipper electrode and lower electrode form two regions with different gaps. By moving one or both of the upper electrode and the lower electrode, it is possible to vary the ratio area of RF coupling depending on whether plasma is permitted to sustain in the first region or in both the first region and the second region.
摘要:
A capacitively-coupled plasma processing system having a plasma processing chamber for processing a substrate is provided. The plasma processing system includes at least an upper electrode and a lower electrode for processing the substrate, the substrate being disposed on the lower electrode during plasma processing. The plasma processing system further includes means for providing at least a first RF signal to the lower electrode, the first RF signal having a first RF frequency. The first RF signal couples with a plasma in the plasma processing chamber, thereby inducing an induced RF signal on the upper electrode. The plasma processing system further includes means for rectifying the induced RF signal to generate a rectified RF signal such that the rectified RF signal is more positively biased than negatively biased, wherein the substrate is configured to be processed while the rectified RF signal is provided to the upper electrode.