Abstract:
Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. In some embodiments, the reader component communicates with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.
Abstract:
Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. In some embodiments, the reader component communicates with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.
Abstract:
An optical sheet, which can suitably absorb external light over a wide range and can improve a contrast, a display device, and a method for producing an optical sheet. The optical sheet is disposed on an observer side relative to an image light source and includes a plurality of layers that control light emitted from the image light source to emit the light on the observer side, at least one of the plurality of layers is an optical functional sheet layer which includes prisms being arranged in parallel along the surface of the optical sheet whereby light can be transmitted and wedge portions are being arranged in parallel between the prisms whereby light can be absorbed. At least one of the plurality of layers other than the optical functional sheet layer is a light-absorbing layer.
Abstract:
An optical sheet, which can suitably absorb external light over a wide range and can improve a contrast, a display device, and a method for producing an optical sheet. The optical sheet is disposed on an observer side relative to an image light source and includes: a plurality of layers that control light emitted from the image light source to emit the light on the observer side, wherein at least one of the plurality of layers is an optical functional sheet layer which includes prisms being arranged in parallel along the surface of the optical sheet whereby light can be transmitted and wedge portions are arranged in parallel between the prisms whereby light can be absorbed. At least one of the plurality of layers other than the optical functional sheet layer is a light-absorbing layer.
Abstract:
To provide an antifouling film-coated substrate, which has a fluorinated organic silicon compound coating film and which is excellent in the antifouling properties as it has water repellency, oil repellency, etc. and also excellent in the abrasion resistance so that deterioration in the antifouling properties is prevented against repeated wiping operations. The antifouling film-coated substrate 3 comprises a transparent substrate 1 having a film-forming surface 1a exposed to at least a moisture-containing atmosphere, and a fluorinated organic silicon compound coating film 2 formed on the film-forming surface 1a of the transparent substrate 1 by a dry-mode method.
Abstract:
There is provided an electro-conductive belt including a resin material and conductive particles, the electro-conductive belt including: an innermost layer that contains none of the conductive particles; a first conductive layer that is adjacent to the innermost layer at an outer side thereof, a concentration of the conductive particles being highest in the first conductive layer; and a second conductive layer that is adjacent to the first conductive layer at an outer side thereof, the second conductive layer containing the conductive particles in a concentration lower than in the first conductive layer and higher than in the innermost layer.