Synthetic silica glass optical material having high resistance to laser induced damage
    92.
    发明申请
    Synthetic silica glass optical material having high resistance to laser induced damage 有权
    合成石英玻璃光学材料具有较高的抗激光损伤能力

    公开(公告)号:US20050187092A1

    公开(公告)日:2005-08-25

    申请号:US11064341

    申请日:2005-02-22

    Abstract: Disclosed is a synthetic silica glass optical material having high resistance to optical damage by ultraviolet radiation in the ultraviolet wavelength range, particularly in the wavelength less than about 250 nm and particularly, exhibiting a low laser induced wavefront distortion; specifically a laser induced wavefront distortion, measured at 633 nm, of between about −1.0 and 1.0 nm/cm when subjected to 10 billion pulses of a laser operating at approximately 193 nm and at a fluence of approximately 70 μJ/cm2. The synthetic silica glass optical material of the present invention comprises OH concentration levels of less than about 600 ppm, preferably less than 200 ppm, and H2 concentration levels less than about 5.0×1017 molecules/cm3,and preferably less than about 2.0×1017 molecules/cm3.

    Abstract translation: 公开了一种合成石英玻璃光学材料,其特征在于波长小于约250nm,特别是具有低激光诱导波前失真的紫外线波长范围内具有高抗紫外线辐射的光学损伤, 特别是在经受100nm脉冲激光在约193nm下操作的激光诱导波前失真(在633nm处),介于约-1.0和1.0nm / cm之间,并且流量约为70μJ/ cm 2 。 本发明的合成石英玻璃光学材料包含小于约600ppm,优选小于200ppm的OH浓度水平和小于约5.0×10 17 H 2 O 2浓度水平, SUP>分子/ cm 3,优选小于约2.0×10 17分子/ cm 3。

    Quartz glass member and projection aligner
    94.
    发明授权
    Quartz glass member and projection aligner 有权
    石英玻璃构件和投影对准器

    公开(公告)号:US06835683B2

    公开(公告)日:2004-12-28

    申请号:US10311233

    申请日:2002-12-17

    Abstract: A silica glass member of the present invention is one wherein when a composition thereof is expressed by SiOx, x is not less than 1.85 nor more than 1.95, wherein a concentration of hydrogen molecules included therein is not less than 1×1016 molecules/cm3 nor more than 5×1018 molecules/cm3, and wherein a difference A−B between an absorption coefficient A immediately before an end of irradiation with 1×104 pulses of ArF excimer laser light in an average one-pulse energy density of 2 mJ/cm2 and a second absorption coefficient B at 600 seconds after a stop of the irradiation with the ArF excimer laser light is not more than 0.002 cm−1. When this silica glass member is applied to an illumination optical system and/or a projection optical system in projection exposure apparatus, it becomes feasible to implement uniform exposure while reducing variation in illuminance on a reticle surface and in an exposure area on a wafer.

    Abstract translation: 本发明的石英玻璃构件是当其组成由SiO x表示时,x不小于1.85或不大于1.95,其中包含的氢分子的浓度不小于1×10 16分子/ cm <3>不超过5×10 18分子/ cm 3,并且其中在照射结束之前的吸收系数A与平均单脉冲中的1×10 4个ArF准分子激光脉冲之间的差AB 用ArF准分子激光照射停止600秒后的能量密度为2mJ / cm 2,第二吸收系数B为0.002cm -1以下。 当将该石英玻璃构件应用于投影曝光装置中的照明光学系统和/或投影光学系统时,可以实现均匀曝光,同时减小掩模版面和晶片上的曝光区域中的照度变化。

    Film coated optical lithography elements and method of making
    95.
    发明授权
    Film coated optical lithography elements and method of making 有权
    薄膜涂层光刻元件及其制作方法

    公开(公告)号:US06833949B2

    公开(公告)日:2004-12-21

    申请号:US10238099

    申请日:2002-09-09

    Abstract: The invention provides coated optical lithography elements and methods of coating optical elements, and particularly optical photolithography elements for use in below 240 nm optical photolithography systems utilizing vacuum ultraviolet light (VUV) lithography wavelengths no greater than about 193 nm, such as VUV projection lithography systems utilizing wavelengths in the 193 nm or 157 nm region. The optical devices manipulate vacuum ultraviolet lithography light less than 250 nm utilizing a deposited silicon oxyfluoride film. The deposited silicon oxyfluoride optical coating assists in the manipulation of incident light and protects the underlying optical materials, layers, and surfaces.

    Abstract translation: 本发明提供涂覆光学光刻元件和涂覆光学元件的方法,特别是用于使用不大于约193nm的真空紫外光(VUV)光刻波长的240nm以下的光学光刻系统的光学光刻元件,例如VUV投影光刻系统 利用193nm或157nm区域中的波长。 光学器件利用沉积的氟氧化硅膜操纵小于250nm的真空紫外光刻光。 沉积的氟氧化硅光学涂层有助于对入射光的操纵并保护底层的光学材料,层和表面。

    Ultra-high pressure discharge lamp
    96.
    发明申请
    Ultra-high pressure discharge lamp 有权
    超高压放电灯

    公开(公告)号:US20040160189A1

    公开(公告)日:2004-08-19

    申请号:US10775218

    申请日:2004-02-11

    Abstract: An ultra-high pressure discharge lamp in which the disadvantage of the reduction of the illuminance maintenance factor due to formation of blackening and milky opacification in the discharge vessel and the disadvantage of formation of cracks in the discharge vessel is eliminated by the discharge vessel being made of a silica glass that contains 0.1 ppm by weight to 290 ppm by weight hydrogen. Further advantages are obtained by the silica glass having a content of OH radicals that is at most 1 ppm by weight and a content of aluminum in a range of 2 ppm by weight to 30 ppm by weight.

    Abstract translation: 通过放电容器被消除,由于在放电容器中形成黑化和乳白色混浊而导致的照度维持系数降低的缺点和放电容器中形成裂缝的缺点的超高压放电灯 的含有0.1重量ppm至290重量ppm氢的二氧化硅玻璃。 通过具有至多1重量ppm的OH基含量的二氧化硅玻璃和在2重量ppm至30重量ppm的范围内的铝的含量可获得其它优点。

    Quartz glass body for optical component and process for manufacture thereof
    100.
    发明授权
    Quartz glass body for optical component and process for manufacture thereof 有权
    用于光学部件的石英玻璃体及其制造方法

    公开(公告)号:US06550277B1

    公开(公告)日:2003-04-22

    申请号:US09709168

    申请日:2000-11-10

    Abstract: The invention concerns a quartz glass body for an optical component for the transmission of UV radiation with a wavelength of 250 nm and less, especially for a wavelength of 157 nm, as well as a process for the manufacture of the quartz glass body where fine quartz glass particles are formed by flame hydrolysis of a silicon compound, deposited and vitrified. Suitability of a quartz glass as represented by high base transmission and radiation resistance depends on structural properties caused by local stoichiometric deviations, and on the chemical composition. The quartz glass body according to the inventions is distinguished by a uniform base transmission (relative change of base transmission ≦1%) in the wavelength range from 155 nm to 250 nm (radiation penetration depth of 10 mm) of at least 80%, a low OH content (less than 10 ppm by weight) and a glass structure substantially free from oxygen defect centers. A quartz glass body of this kind is manufactured by a process which allows bulk embedding of hydrogen or oxygen into the glass network in that at least a two stage heat treatment takes place at temperatures ranging from 850° C. to 1600° C. before the vitrification, the last stage comprising sintering at a temperature between 1300° C. and 1600° C. in an atmosphere containing hydrogen or oxygen, or a nonflammable mixture of these substances.

    Abstract translation: 本发明涉及一种用于传输波长为250nm以下,特别是波长为157nm的紫外线的光学部件的石英玻璃体,以及用于制造石英玻璃体的方法,其中精细的石英 通过硅化合物的火焰水解形成玻璃颗粒,沉积并玻璃化。 由高碱性透射和耐辐射性表示的石英玻璃的适用性取决于由局部化学计量偏差引起的结构特性以及化学成分。 根据本发明的石英玻璃体的特征在于在155nm至250nm(辐射穿透深度为10mm)的波长范围内的均匀的基底透射率(基底透射率的相对变化<= 1%)为至少80% 低OH含量(小于10ppm重量)和基本上不含氧缺陷中心的玻璃结构。 这种石英玻璃体是通过允许将氢气或氧气大量嵌入玻璃网络的方法来制造的,因为至少在两个阶段之间的热处理在850℃至1600℃之间的温度下进行 玻璃化,最后阶段包括在含有氢气或氧气的气氛中在1300℃和1600℃之间的温度下烧结,或这些物质的不可燃混合物。

Patent Agency Ranking