Abstract:
Disclosed herein are generally to methods and systems that facilitate imaging of cells on a substrate and more particularly to pre-implantation (in vitro) and post-implantation (in vivo) imaging of cell-seeded substrates implanted in target tissues in the context of stem cell therapy.
Abstract:
A specimen holding and positioning apparatus operable to substantially non-movably maintain a specimen (e.g., an excised tissue specimen) in a fixed or stable orientation with respect to the apparatus during imaging operations (e.g., x-ray imaging), transport (e.g., from a surgery room to a pathologist's laboratory), and the like for use in facilitating accurate detection and diagnosis of cancers and/or other abnormalities of the specimen.
Abstract:
Techniques and systems are disclosed for a bioassay that is an in vitro mimic of peripheral nerve generation using the sensory neurons that innervate the peripheral nervous system. In some embodiments, the techniques may assist in detecting the bioactivity or potency of nerve grafts (e.g., processed, acellular human allografts) for fostering or supporting peripheral nerve regeneration. In various embodiments, techniques comprise affixing a harvested sensory neuron (e.g., a DRG) to a nerve graft segment to form a test construct; culturing the test construct in a medium; analyzing the test construct to indicate the amount of outgrowing peripheral nerve structure; and determining the potency of the nerve graft from a metric derived from the analysis. In some embodiments, techniques and materials may be used to test the effect of a varied test condition on peripheral nerve growth.
Abstract:
The present invention relates to methods of manufacture and utility of an artificial trabecular meshwork [TM] that utilizes micro- and nanofabricated materials bioengineered to mimic the structure and function of native outflow system of the eye.
Abstract:
Provided are a protective agent for electron microscopic observation in a vacuum which can protect a biological sample in a water-containing state, such as a mammal, a plant tissue or a cultured cell, and a single cell in the living state without deforming it even in a vacuum, a kit using the same, methods for observation, diagnosis, evaluation, and quantification of a sample by an electron microscope, and a sample stage to be used for the observation. The protective agent for electron microscopic observation of the present invention contains a a component to impart the survival environment, a saccharide, and an electrolyte.
Abstract:
The present invention is a method to quantify biomarkers. The method uses an X-ray fluorescence spectrometer to perform an X-ray fluorescence analysis on the sample to obtain spectral features derived from the biomarker; and quantifying the X-ray fluorescence signal of the biomarker.
Abstract:
An apparatus that detects a material within a sample includes signal generation circuitry that generates a first signal having at least one orbital angular momentum applied thereto and applies the first signal to the sample. A detector receives the first signal after the first signal passes through the sample and detects the material responsive to a detection of a predetermined profile of orbital angular momentum states within the first signal received from the sample.
Abstract:
A device and a system are for measuring fluid potential in a plant tissue by measuring pressure changes caused due to osmosis of the plant fluid. The measuring device includes a compartment having a ridged body configured for containing an osmoticum. The compartment has at least one opening; at least two selective barrier layers, such as a membrane positioned at least over the openings of the compartment; and at least one pressure sensor configured for detecting changes in pressure of fluid in the compartment. The selective barrier is located for selectively allowing water transfer between the plant fluid and the osmoticum in the compartment. The compartment is configured such that there is a direct contact between the plant fluid and the osmoticum therein via the selective barrier.
Abstract:
The production and use of semiconducting nanopost arrays made by nanofabrication is described herein. These nanopost arrays (NAPA) provide improved laser ionization yields and controllable fragmentation with switching or modulation capabilities for mass spectrometric detection and identification of samples deposited on them.