摘要:
An automotive or other power system including a flow cell, in which the stack that provides power is readily isolated from the storage vessels holding the cathode slurry and anode slurry (alternatively called “fuel”) is described. A method of use is also provided, in which the “fuel” tanks are removable and are separately charged in a charging station, and the charged fuel, plus tanks, are placed back in the vehicle or other power system, allowing fast refueling. The technology also provides a charging system in which discharged fuel is charged. The charged fuel can be placed into storage tanks at the power source or returned to the vehicle. In some embodiments, the charged fuel in the storage tanks can be used at a later date. The charged fuel can be transported or stored for use in a different place or time.
摘要:
An automotive or other power system including a flow cell, in which the stack that provides power is readily isolated from the storage vessels holding the cathode slurry and anode slurry (alternatively called “fuel”) is described. A method of use is also provided, in which the “fuel” tanks are removable and are separately charged in a charging station, and the charged fuel, plus tanks, are placed back in the vehicle or other power system, allowing fast refueling. The technology also provides a charging system in which discharged fuel is charged. The charged fuel can be placed into storage tanks at the power source or returned to the vehicle. In some embodiments, the charged fuel in the storage tanks can be used at a later date. The charged fuel can be transported or stored for use in a different place or time.
摘要:
An apparatus for recovery of tritium from contaminated gaseous mixtures by way of isotope-exchange processes includes a container having a preferably cylindrical shape made of steel or other suitable metal or glass, referred to as “module” (1), which contains at least one permeator tube (T) made of metal or metal alloy selectively permeable to hydrogen and its isotopes, wherein the tube (T) is set in cantilever fashion with its free end closed, there being further provided elements for applying an axial tensile force on the free end of the permeator tube (T) and elements for electrical connection of the free end of the tube (T) to an end flange (FF) of the module (1) adjacent thereto.
摘要:
An electrochemical power system is provided that generates an electromotive force (EMF) from the catalytic reaction of hydrogen to lower energy (hydrino) states providing direct conversion of the energy released from the hydrino reaction into electricity, the system comprising at least two components chosen from: H2O catalyst or a source of H2O catalyst; atomic hydrogen or a source of atomic hydrogen; reactants to form the H2O catalyst or source of H2O catalyst and atomic hydrogen or source of atomic hydrogen; and one or more reactants to initiate the catalysis of atomic hydrogen. The electrochemical power system for forming hydrinos and electricity can further comprise a cathode compartment comprising a cathode, an anode compartment comprising an anode, optionally a salt bridge, reactants that constitute hydrino reactants during cell operation with separate electron flow and ion mass transport, and a source of hydrogen. Due to oxidation-reduction cell half reactions, the hydrino-producing reaction mixture is constituted with the migration of electrons through an external circuit and ion mass transport through a separate path such as the electrolyte to complete an electrical circuit. A power source and hydride reactor is further provided that powers a power system comprising (i) a reaction cell for the catalysis of atomic hydrogen to form hydrinos, (ii) a chemical fuel mixture comprising at least two components chosen from: a source of H2O catalyst or H2O catalyst; a source of atomic hydrogen or atomic hydrogen; reactants to form the source of H2O catalyst or H2O catalyst and a source of atomic hydrogen or atomic hydrogen; one or more reactants to initiate the catalysis of atomic hydrogen; and a support to enable the catalysis, (iii) thermal systems for reversing an exchange reaction to thermally regenerate the fuel from the reaction products, (iv) a heat sink that accepts the heat from the power-producing reactions, and (v) a power conversion system.
摘要:
A membrane electrode assembly including an anode that incorporates a porous support and a hydrogen permeable metal thin film disposed on the porous support; a cathode; and a proton conductive solid oxide electrolyte membrane disposed between the anode and the cathode.
摘要:
The invention provides a novel fuel cell, the output voltage of which is pH dependent. The fuel cell comprises a membrane electrode assembly and a light source. In accordance with one embodiment, the membrane electrode assembly includes i) an electrolyte; ii) an anode operably coupled to the electrolyte; and iii) a cathode operably coupled to the electrolyte, wherein the cathode is made from an electrically conductive material and has an unroughened surface where an adsorbate material is applied. The adsorbate material used herein comprises a material having semiconductor properties, and the combination of the electrically conductive material and the adsorbate material is photosensitive and has catalytic properties. The invention also provides a novel electrode that can be used as a cathode in a fuel cell, a novel method for making the electrode, and a novel method of generating electricity using the fuel cell and/or electrode of the invention.
摘要:
A metal-air battery includes a canister and a spiral wound electrode assembly disposed within the canister. The electrode assembly includes an ion permeable and substantially gas impermeable anode, a catalytic cathode, and a dielectric separator disposed between the anode and cathode.
摘要:
A process for forming a porous nanoscale membrane is described. The process involves applying a nanoscale film to one side of a substrate, where the nanoscale film includes a semiconductor material; masking an opposite side of the substrate; etching the substrate, beginning from the masked opposite side of the substrate and continuing until a passage is formed through the substrate, thereby exposing the film on both sides thereof to form a membrane; and then simultaneously forming a plurality of randomly spaced pores in the membrane. The resulting porous nanoscale membranes, characterized by substantially smooth surfaces, high pore densities, and high aspect ratio dimensions, can be used in filtration devices, microfluidic devices, fuel cell membranes, and as electron microscopy substrates.
摘要:
Fuel cells 100 of the invention are operable at a temperature of about 500° C. The unit cell has a solid oxide electrolyte layer formed on a hydrogen separable metal layer. An anode has a catalyst supported thereon to accelerate a reforming reaction of methane. A fuel gas is produced by reforming a hydrocarbon-containing material in a reformer 20. Setting a lower reaction temperature enables production of the fuel gas containing both methane and hydrogen. In the fuel cells 100 receiving a supply of the fuel gas, the reforming reaction of methane contained in the fuel gas proceeds simultaneously with consumption of hydrogen contained in the fuel gas. This methane reforming reaction is endothermic to absorb heat produced in the process of power generation and thereby equalizes the operation temperature of the fuel cells 100.
摘要:
A fuel reformer which can easily achieve high weight energy density and high volume energy density, and a method for producing the fuel reformer with ease and high efficiency as well as an electrode for electrochemical device, such as a fuel cell, and an electrochemical device are provided. The present invention is to feed hydrogen obtained from a fuel reformer having a catalyst layer containing Pt for taking out hydrogen from a liquid fuel, such as methanol, and a hydrogen permeable layer, such as a Pd thin film, which is impermeable to liquid and permeable to hydrogen to an electrochemical device such as a fuel cell, which comprises a negative electrode, a positive electrode and a proton conductive film sandwiched therebetween. The present invention provides a method of producing the hydrogen permeable layer in the reformer by forming the hydrogen permeable layer and the catalyst layer on a base layer comprising Al or the like, and removing the base layer by dissolution.