Abstract:
A design for an inverting delay component of an oscillator is disclosed, which enables the oscillator to be more tolerant of parameter variations. This increased parameter variation tolerance allows the KVCO of the oscillator to vary less between the worst case scenario (where the components of the oscillator meet minimum specifications) and the best case scenario (where the components meet the maximum specifications). This in turn means that the worst case KVCO value will be significantly smaller than in the prior art. By using a significantly smaller KVCO value, the jitter experienced at the output of the oscillator will be substantially reduced. Thus, this design enables a low-jitter oscillator to be realized.
Abstract:
A structure for a delay cell in a Voltage-Controlled Oscillators (VCO) and method for operating the delay cell. The delay cell comprises a latch and an impedance circuit (comprising resistance and capacitance elements). The impedance circuit electrically couples different nodes of the latch, a supply voltage, and ground. By adjusting the resistance of the impedance circuit, the time needed for the latch to switch states in response to the switching of an input coupled to the latch is adjusted accordingly. By choosing the appropriate nodes of the delay cell as input and output nodes of the delay cell, the delay time of the delay cell can be adjusted by adjusting the resistance of the impedance circuit. As a result, the operating frequency range of the VCO can be widened compared with prior art. Similar impedance circuits can be added to the delay cell to expand the operating frequency range of the VCO.
Abstract:
A variable delay circuit includes plural stages of first variable delay elements coupled in series for sequentially delaying a reference clock signal or a data signal, a second variable delay element coupled in parallel to the plural stages of first variable delay elements for delaying the reference clock signal, a phase comparator for comparing the phase of the reference clock signal delayed by the plural stages of first variable delay elements with the phase of the reference clock signal delayed by the second variable delay element, and a delay amount control unit for controlling the delay amount of each of the plural stages of first variable delay elements based on the comparison result of the phase comparator in order that the phase of the reference clock signal delayed by the plural stages of first variable delay elements is substantially the same as the phase of the reference clock signal delayed by the second variable delay element after predetermined cycles.
Abstract:
A differential delay cell is provided herein that not only receives a pair of differential input values, but also receives a pair of differential control values for delaying the differential input values to produce a pair of differential output values. As such, a delay cell is provided, which is truly differential, and therefore, capable of demonstrating a significant improvement in noise performance. The differential delay cell of the present invention also demonstrates high frequency stability around the center frequency, constant gain and increased tuning range capabilities. In this manner, the differential delay cell may be used in PLL or DLL designs as part of a low noise VCO or a low noise delay line, respectively.
Abstract:
A correction circuit for generating a control signal for correcting a characteristic change of a first transistor includes a control signal adjusting section including a constant voltage reduction element for determining either one of a maximum voltage and a minimum voltage of the control signal and a second transistor for determining a characteristic of the control signal, a gate electrode of the second transistor receiving a prescribed voltage; and a resistor section including two types of resistor elements having resistance values of different temperature dependency characteristics from each other, the resistor elements being connected in series. The constant voltage reduction element, the second transistor, and the resistor section are connected in series between a supply terminal and a ground terminal. The control signal is output from a connection point between the control signal adjusting section and the resistor section.
Abstract:
Delay locked loop circuitry for generating a predetermined phase relationship between a pair of clocks. A first delay-locked loop includes a delay elements arranged in a chain, the chain receiving an input clock and generating, from each delay element, a set of phase vectors, each shifted a unit delay from the adjacent vector. The first delay-locked loop adjusts the unit delays in the delay chain using a delay adjustment signal so that the phase vectors span a predetermined phase shift of the input clock. A second delay-locked loop selects, from the first delay-locked loop, a pair of phase vectors which brackets the phase of an input clock. A phase interpolator receives the selected pair of vectors and generates an output clock and a delayed output clock, the amount of the delay being controlled by the delay adjustment signal of the first delay-locked loop circuitry. A phase detector compares the delayed output clock with the input clock and adjusts the phase interpolator, based on the phase comparison, so that the phase of the delayed output clock is in phase with the input clock. As a result, there is a predetermined phase relationship between the output clock and the input clock, the phase relationship being the amount of delay between the output clock and the delayed output clock. Different phase relationships between the input and output clock are possible depending on the number of unit delays used in the path of the, delayed output clock or the output clock.
Abstract:
In accordance with a preferred embodiment, a time-interleaved (or multi-phase) architecture is provided having individual control of a plurality of output signals or phases. The time-interleaved architecture may be implemented using a first set of delay cells such as those in a ring oscillator or a delay line device receiving overall control of its output signals by a global control signal. The global control signal may be issued by a phase-locked loop, delay-locked loop, or other like structure. A second set of delay cells is provided to further delay the output signals produced by the first set of delay cells. The second set of delay cells are controlled by individual control signals uniquely calibrated in accordance with a preferred embodiment of the invention to provide uniform (or substantially) uniform time spacing between output signals.
Abstract:
A multi-port network interface circuit and relative control method. The multi-port network is used for transmitting a plurality of signals to different nodes (like terminals) of a network via multiple ports of the network interface circuit. The network interface circuit triggers the transmission of the signals of the different ports with clocks of different phases, such that transition of the transmitted signals of different ports will not occur at a same time.
Abstract:
A low voltage, low power versatile and compact delay circuit for CMOS integrated circuits. The biasing circuit and comparator of the delay circuit are implemented with a relatively few simple transistor stages. This approach makes the circuit compact and allows for operation at very low supply voltages (e.g., 1.5 volts). The time delay of the delay circuit is made to depend only on passive resistive and capacitive components. The time delay is thus insensitive to fluctuations in the supply voltage, as well as fluctuations in temperature. This configuration is particularly advantageous in circuits where several timing elements need to track with one another, as they can all be formed with resistors and capacitors of the same construction. The design also makes the circuit insensitive to process parameters, as well as later environmental effects due to operating temperature, circuit aging, and the like. A common signal is used to control both a trip point voltage of a comparator and a voltage change rate of a clock ramp signal in the delay circuit, such that variations in voltage supplied to the clock during normal operation does not substantially affect the clock period.
Abstract:
A method and apparatus for operation in a multi-frequency band system in the presence of an interference, the method comprising the steps of: receiving signaling in a plurality of wideband frequency sub-bands, each wideband frequency sub-band having a different center frequency, wherein a bandwidth of each wideband frequency sub-band is at least 2 percent of a center frequency of the wideband frequency sub-band; detecting an interfering signal having signal energy in a portion of a respective sub-band of the wideband frequency sub-bands; deciding to discontinue use of the respective sub-band; and instructing a transmitting device transmitting the signaling to transmit subsequent signaling in any except the respective sub-band of the plurality of wideband frequency sub-bands.