Abstract:
The invention relates to a device for continuously carrying out chemical reactions. The device comprises a microwave generator, a microwave applicator accommodating a microwave-transparent tube, and an isothermal reaction section which is arranged such that the material to be reacted is guided inside the microwave-transparent tube through a microwave applicator which is used as the heating zone and in which it is heated to reaction temperature by means of microwaves that are emitted from the microwave generator into the microwave applicator. The material to be reacted, which is heated and optionally under pressure, is transferred from the microwave applicator to an isothermal reaction zone once it has left the heating zone, said reaction zone being arranged downstream of the heating zone, and is cooled once it has left the isothermal reaction zone.
Abstract:
Disclosed is a hydrogen generator that prevents the reformate water from bypassing the evaporator in a hydrogen generator, and the occurrence of sudden temperature changes within an evaporation flow path. The hydrogen generator comprises: an evaporator that produces a mixed gas by mixing a raw material gas containing methane with water vapor; a reformer that changes the mixed gas into a hydrogen-containing gas through a steam reforming reaction; and a combustor that supplies heat to the evaporator and the reformer. The evaporator comprises: an inner cylinder; an outer cylinder enclosing the inner cylinder; and a middle cylinder that is inserted between the inner cylinder and the outer cylinder, and that defines a helical flow path between the inner cylinder and the outer cylinder, through which water supplied from the outside flows.
Abstract:
A continuous process for the thermal treatment of a refinery sludge, comprising the following operations: a. drying of the refinery sludge, possibly mixed with pet-coke, at a temperature ranging from 110 to 120° C.; b. gasification of the dried sludge, at a temperature ranging from 750 to 950° C., for a time of 30 to 60 minutes, in the presence of a gas containing oxygen and water vapour, with the associated production of synthesis gas (CO+H2) and a solid residue; c. combustion of the synthesis gas at a temperature ranging from 850 to 1,200° C. and recycling of the combustion products for the drying and gasification phases; and d. inertization of the solid residue, at a temperature ranging from 1,300 to 1,500° C., by vitrification with plasma torches.
Abstract:
A direct carbonaceous material to power generation system integrates one or more solid oxide fuel cells (SOFC) into a fluidized bed gasifier. The fuel cell anode is in direct contact with bed material so that the H2 and CO generated in the bed are oxidized to H2O and CO2 to create a push-pull or source-sink reaction environment. The SOFC is exothermic and supplies heat within a reaction chamber of the gasifier where the fluidized bed conducts an endothermic reaction. The products from the anode are the reactants for the reformer and vice versa. A lower bed in the reaction chamber may comprise engineered multi-function material which may incorporate one or more catalysts and reactant adsorbent sites to facilitate excellent heat and mass transfer and fluidization dynamics in fluidized beds. The catalyst is capable of cracking tars and reforming hydrocarbons.
Abstract:
A method for converting carbon dioxide in flue gas into natural gas using dump energy. The method includes: 1) transforming and rectifying a voltage of dump energy generated from a renewable energy plant, introducing the voltage-transformed and rectified dump energy into an electrolyte solution to electrolyze water therein to yield H2 and O2; 2) purifying industrial flue gas to separate CO2 therein and purifying CO2; 3) transporting H2 generated and CO2 to a synthesis equipment, allowing a methanation reaction between H2 and CO2 to happen to yield a high-temperature mixed gas with main ingredients of CH4 and water vapor; 4) employing the high-temperature mixed gas to conduct indirect heat exchange with process water to yield superheated water vapor; 5) delivering the superheated water vapor to a turbine to generate electric energy, and returning the electric energy to step 1); and 6) condensing and drying the mixed gas.
Abstract:
An object is to provide a hydrogen sulfide gas production plant that can recover discharged waste hydrogen sulfide gas and efficiently supply the gas to a process plant where processing is conducted by using hydrogen sulfide gas, and also provide a method for recovering and using the waste hydrogen sulfide gas by the hydrogen sulfide gas production plant. In the present invention, the hydrogen sulfide gas production plant is provided with a pipe that recovers the waste hydrogen sulfide gas discharged from the hydrogen sulfide gas production plant and that has one end connected to the process plant where the hydrogen sulfide gas is used, and the discharged waste hydrogen sulfide gas is recovered and the recovered waste hydrogen sulfide gas is supplied to the process plant through the pipe.
Abstract:
A compact, chemical-mechanical apparatus, having no electrical components, for storing and generating hydrogen safely, on-demand, at the time and point of use in small or large quantities using the environmentally clean chemical reaction between sodium metal and water to generate hydrogen (H2) gas and sodium hydroxide (NaOH) byproduct is presented, for powering electricity generating fuel cells for large scale commercial and private electric motor vehicle transport. The apparatus of the present invention supports hydrogen gas generation by the controlled addition of liquid water to solid sodium metal to produce hydrogen gas and sodium hydroxide using only mechanical components without electrical components that require external power and can generate sparks or short circuits, producing catastrophic failure in hydrogen systems. The sodium hydroxide can be reclaimed and recycled by electrolysis using hydroelectric power to recover the sodium metal for reuse in generating hydrogen, thereby forming a complete clean energy hydrogen power cycle.
Abstract:
A hydrogen generator including a reactor chamber having a feedstock inlet and an inlet seal positioned at the feedstock inlet. At least one pair of feed rollers is positioned to draw a feedstock through the inlet seal and into the reactor chamber. At least one pair of distressing rollers is positioned in line with the feed rollers to produce stress in the feedstock. Steam is provided to the reactor chamber through a steam inlet and hydrogen is collected from a hydrogen outlet.
Abstract:
System and process for producing a H2-containing product gas and purified water from an integrated H2-producing reforming and thermal water purification process. Raw water, such as salt water, is heated by indirect heat transfer with reformate from the H2-producing reforming process for purifying raw water in a multiple effect distillation process.
Abstract:
The present disclosure is directed to systems and methods for actively controlling the steam-to-carbon ratio in hydrogen-producing fuel processing systems that include a feedstock delivery system. The feedstock delivery system supplies a combined feedstock stream including steam and carbon-containing feedstock to a hydrogen-producing region, which produces a mixed gas stream including hydrogen gas as a majority component therefrom. The systems and methods may include measuring a thermodynamic property of a steam stream, a carbon-containing feedstock stream, and/or the combined feedstock stream and controlling the flow rate and/or pressure of a water stream, the steam stream, and/or the carbon-containing feedstock stream based on a desired steam-to-carbon ratio in the combined feedstock stream and/or a desired flow rate of the mixed gas stream and may include feedforward and/or feedback control strategies.