Abstract:
Wireless mobile communication (WMC) devices located in operating proximity of each other may be enabled to form a mesh (ad hoc wireless) network. WMC devices in a mesh network may form a queuing system wherein each WMC device may store data forwarded to and/or from other WMC devices in the mesh network. Each WMC device in the mesh network may have different queuing capability based on a plurality of factors that may comprise internal factors such as processing, storage, power, and/or connectivity. The mesh network may comprise an internal addressing scheme that may enable utilization of the queuing system whether or not WMC devices in the mesh network are communicatively coupled to external networks.
Abstract:
Aspects of a method and system for traffic engineering in an IPSec secured network are provided. In this regard, a node in a network may be authenticated as a trusted third party and that trusted third party may be enabled to acquire security information shared between or among a plurality of network entities. In this manner, the trusted third party may parse, access and operate on IPSec encrypted traffic communicated between or among the plurality of network entities. Shared security information may comprise one or more session keys utilized for encrypting and/or decrypting the IPSec secured traffic. The node may parse IPSec traffic and identify a flow associated with the IPsec traffic. In this manner, the node may generate and/or communicate statistics pertaining to said IPSec secured traffic based on the flow with which the traffic is associated.
Abstract:
A device includes circuitry configured to receive a signal burst, apply one or more filters to the signal burst based to achieve a predetermined image rejection rate, apply at least one harmonic rejection mode to the signal burst, and amplify the signal burst based on a gain partitioning determination.
Abstract:
In some aspects, the disclosure is directed to methods and systems of a multi-input receiver. In one or more embodiments, a receiver receives a plurality of signals each via a respective one of a plurality of wireless channels. In one or more embodiments, a processing stage of the receiver combines the received plurality of signals into a combined signal for input to an analog-to-digital converter (ADC) of the receiver. In one or more embodiments, the ADC generates, at a predetermined sampling frequency, samples of the combined signal. In one or more embodiments, the receiver recovers from the generated samples at least one signal component corresponding to at least one of the plurality of signals.
Abstract:
A wireless communication device (WDEV) receives, detects, snoops, etc. (generally, “receives”) signals that are transmitted between two other WDEVs and extracts information therefrom to determine the location of the WDEV. These signals can include fine timing measurement (FTM) and/or timestamps related information as part of a frame exchange procedure between those two other WDEVs. A new protocol specifies when such an FTM and/or timestamps frame exchange procedure is performed between the two other WDEVs, and the WDEV intelligently detects/receives such signals at such specified times. When the WDEV operates in a reduced power or sleep state, the WDEV awakens from the reduced power or sleep state at the appropriate times to detect FTM and/or timestamps related information of such a frame exchange procedure. The WDEV then can process such FTM and/or timestamps related information for use in determining the location of the WDEV relative to the two other WDEVs.
Abstract:
An apparatus, method and computer program product comprise controlling cellular network based communication in a primary cell on a frequency band related to the cellular network and by using an uplink and downlink configuration specific to the primary cell; controlling communication in a secondary cell on a frequency band related to a television white space channel and by using an uplink and downlink configuration specific to the secondary cell; measuring radio interference on a temporarily set uplink related carrier on the secondary cell based on information on the temporarily set uplink related carrier received on a downlink related carrier on the primary cell; and reporting results of radio interference measurement via the primary cell.
Abstract:
Explicit feedback format within single user, multiple user, multiple access, and/or MIMO wireless communications. A beamformer provides a first communication to a beamformee, and based thereon, the beamformee may ascertain certain characteristics associated with the type and format of feedback to be provided to the beamformee via a second communication from the beamformee to the beamformer. For example, the first communication may include indication of a current operational mode, such as whether it is in accordance with single-user multiple input multiple output (SU-MIMO) or multi-user multiple-input-multiple-output (MU-MIMO). Also, the first communication may indicate a requested steering matrix's rank to be employed in accordance with subsequent beamforming by the beamformer. Also, additional information such as that pertaining to per-tone SNR values for each respective space-time stream, per-tone or per-sub-band eigen-values, the particular channel width being employed (e.g., 20, 40, 80, or 160 MHz), etc. may be included within the second communication.
Abstract:
A system for transcoding locally cached content may include a memory configured to store at least a video stream. A controller communicatively coupled to the memory may be configured to determine a video definition format of a requested video stream and compare the requested video stream with a video definition format of a cached version of the requested video stream. A transcoder coupled to the controller may be configured to convert the cached version of the requested video stream to a lower video definition format if the video definition format of the cached version is determined to be higher than the video definition format of the requested video stream. If the video definition format of the requested video stream is same as the video definition format of the cached version, the controller may supply the requested video stream using the cached version stored in the memory without transcoding.
Abstract:
A wireless communication device (alternatively, device) includes a processor configured to support communications with other wireless communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other wireless communication device(s) and to generate and process signals for such communications. Different long training fields (LTFs) are designed using different respective binary sequences. The LTFs are designs based on a number of resource units (RUs) and RU sizes associated with a sub-carriers/tone plan. Each RU allocation specifies a respective one or more RUs of one or more RU sizes for a communication channel. The LTFs are designed such that peak to average power ratio (PAPR) of the LTF increases across the RU allocations as size of the one or more RU sizes increases.
Abstract:
An antenna section includes a bracket antenna configured to send and receive RF communications of a mobile communication device having a back side that is enclosed by a back cover, wherein the bracket antenna forms a structural portion of the back cover of the mobile communication device that encloses at least one portion of an edge of the mobile communication device and at least one portion of the back side. A booster plate is coupled to the mobile communication device and is configured to electromagnetically interact with the bracket antenna to modify the antenna beam pattern.