Abstract:
A chip light emitting diode having a wide viewing angle, and a fabrication method thereof. The chip light emitting diode has a resin package sealing a light emitting chip which has at least one curved projecting part. The curved projecting part has a cross section which is substantially semicircular, or substantially or partially elliptical or parabolic. The curved projecting part preferably has a cross section which is comprised of a plurality of straight lines, an angle being formed between adjacent lines. The cross section is elongated to form a cylindrical outer surface of the resin package.
Abstract:
There are provided a mold for forming a molding member and a method for forming a molding member using the same. The mold includes an upper surface, and a lower surface having an outer peripheral surface and a concave surface surrounded by the outer circumference. Injection and discharge holes extend from the upper surface to the lower surface. Accordingly, after the mold and the package are coupled so that the discharge hole is directed upward, a molding member can be formed on the package by injecting the molding material through the injection hole, whereby it is possible to prevent air bubbles from being captured in the molding member.
Abstract:
Disclosed is a light emitting device having a plurality of light emitting cells and a package having the same mounted thereon. The light emitting device includes a plurality of light emitting cells which are formed on a substrate and each of which has an N-type semiconductor layer and a P-type semiconductor layer located on a portion of the N-type semiconductor layer. The plurality of light emitting cells are bonded to a submount substrate. Accordingly, heat generated from the light emitting cells can be easily dissipated, so that a thermal load on the light emitting device can be reduced. Meanwhile, since the plurality of light emitting cells are electrically connected using connection electrodes or electrode layers formed on the submount substrate, it is possible to provide light emitting cell arrays connected to each other in series. Further, it is possible to provide a light emitting device capable of being directly driven by an AC power source by connecting the serially connected light emitting cell arrays in reverse parallel to each other.
Abstract:
Disclosed is a light emitting device having a plurality of light emitting cells and a package having the same mounted thereon. The light emitting device includes a plurality of light emitting cells which are formed on a substrate and each of which has an N-type semiconductor layer and a P-type semiconductor layer located on a portion of the N-type semiconductor layer. The plurality of light emitting cells are bonded to a submount substrate. Accordingly, heat generated from the light emitting cells can be easily dissipated, so that a thermal load on the light emitting device can be reduced. Meanwhile, since the plurality of light emitting cells are electrically connected using connection electrodes or electrode layers formed on the submount substrate, it is possible to provide light emitting cell arrays connected to each other in series. Further, it is possible to provide a light emitting device capable of being directly driven by an AC power source by connecting the serially connected light emitting cell arrays in reverse parallel to each other.
Abstract:
The present invention relates to a light emitting element with arrayed cells, a method of manufacturing the same, and a light emitting device using the same. The present invention provides a light emitting element including a light emitting cell block with a plurality of light emitting cells connected in series or parallel on a single substrate, and a method of manufacturing the same, wherein each of the plurality of light emitting cells includes an N-type semiconductor layer and a P-type semiconductor layer, and the N-type semiconductor layer of one light emitting cell is electrically connected to the P-type semiconductor layer of another adjacent light emitting cell. Further, the present invention provides a light emitting device including a light emitting element with a plurality of light emitting cells connected in series. Accordingly, it is possible to simplify a manufacturing process of a light emitting device for illumination capable of being used with a household AC power source, to decrease a fraction defective occurring in manufacturing a light emitting device for illumination, and to mass-produce the light emitting device for illumination. Further, there is an advantage in that DC driving efficiency can be enhanced in an AC operation by installing a predetermined rectifying circuit outside the light emitting element.
Abstract:
Disclosed is a light emitting diode (LED) package having an array of light emitting cells coupled in series. The LED package comprises a package body and an LED chip mounted on the package body. The LED chip has an array of light emitting cells coupled in series. Since the LED chip having the array of light emitting cells coupled in series is mounted on the LED package, it can be driven directly using an AC power source.
Abstract:
The present invention relates to a side illumination lens and a luminescent device using the same, and provides a body, a total reflection surface with a total reflection slope with respect to a central axis of the body, and a linear and/or curved refractive surface(s) formed to extend from a periphery of the total reflection surface; and a luminescent device including the lens. According to the present invention, a lens with total internal reflection surfaces with different slopes, and a linear and/or curved refractive surface(s) allows light emitted forward from a luminescent chip to be guided to a side of the lens. Further, a linear surface(s) formed in a direction perpendicular or parallel to a central axis of a lens and a curved surface are formed on an edge of the lens so that a process of fabricating the lens is facilitated, thereby reducing a defective rate and fabrication costs of the lens.
Abstract:
The present invention discloses a light emitting diode (LED) including a plurality of light emitting cells arranged on a substrate. The LED includes half-wave light emitting units each including at least one light emitting cell, each half-wave light emitting unit including first and second terminals respectively arranged at both ends thereof; and full-wave light emitting units each including at least one light emitting cell, each full-wave light emitting units including third and fourth terminals respectively formed at both ends thereof. The third terminal of each full-wave light emitting unit is electrically connected to the second terminals of two half-wave light emitting units, and the fourth terminal of each full-wave light emitting unit is electrically connected to the first terminals of other two half-wave light emitting units. Also, a first half-wave light emitting unit is connected in series between the third terminal of a first full-wave light emitting unit and the fourth terminal of a second full-wave light emitting units, and a second half-wave light emitting units is connected in series between the fourth terminal of the first full-wave light emitting unit and the third terminal of the second full-wave light emitting unit.
Abstract:
Disclosed are an AC light emitting device with a long-persistent phosphor and an AC light emitting device module having the same. According to an exemplary embodiment of the present invention, the light emitting device includes a first light emitting diode chip and a second light emitting diode chip, each of which has a plurality of light emitting cells on a single substrate. Further, a first long-persistent phosphor is positioned on the first light emitting diode chip to perform wavelength conversion for a portion of light emitted from the first light emitting diode chip; and a second long-persistent phosphor is positioned on the second light emitting diode chip to perform wavelength conversion for a portion of light emitted from the second light emitting diode chip. The afterglow luminescence resulted from the second long-persistent phosphor is allowed to be different from that resulted from the first long-persistent phosphor, whereby a flicker effect of the AC light emitting device can be more alleviated.
Abstract:
Disclosed is a light emitting diode (LED) package having an array of light emitting cells coupled in series. The LED package comprises a package body and an LED chip mounted on the package body. The LED chip has an array of light emitting cells coupled in series. Since the LED chip having the array of light emitting cells coupled in series is mounted on the LED package, it can be driven directly using an AC power source.